

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 03, Issue: 01 (January, 2026)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Precision Farming Techniques for Vegetable Production: Scope and Prospects in India

*Saketi Radha Krishna¹, G. Narendra² and Jeebanjyoti Behra³

¹Department of Vegetable Science, College of Agriculture, OUAT, Bhubaneswar, India

²Department of Agronomy, College of Agriculture, OUAT, Bhubaneswar, India

³Dept. of Agricultural Extension, College of Agriculture, OUAT, Bhubaneswar, India

*Corresponding Author's email: saketiradhakrishna@gmail.com

Vegetable cultivation occupies a crucial place in Indian agriculture, contributing significantly to food and nutritional security, employment generation and farm income diversification. India is the second-largest producer of vegetables globally, yet productivity levels remain far below potential due to inefficient resource use, climatic uncertainties, labor shortages and increasing production costs. Traditional vegetable farming systems are no longer sufficient to meet the growing demand for safe, high-quality produce under changing environmental and economic conditions.

Precision farming has emerged as a promising solution to address these challenges. According to the US House of Representatives (1997), precision farming is an information-based system designed to improve long-term, site-specific farm efficiency and profitability while reducing adverse environmental impacts. It is also referred to as Site-Specific Crop Management (SSCM), wherein agricultural inputs and practices are adjusted according to spatial variability in soil and crop conditions (Nabi et al., 2017). Precision farming is particularly relevant for vegetable crops because they are highly sensitive to variations in soil fertility, moisture, pest pressure and microclimate.

Evolution of Precision Farming in Vegetable Production

The journey of precision farming has evolved alongside advancements in agricultural science and digital technologies. In the early 1970s, vegetable cultivation largely depended on traditional practices such as compost application, manual labour and limited mechanisation. Productivity was low and decision-making was based on farmer experience rather than data. During the 1980s, the use of synthetic fertilisers, pesticides and drip irrigation systems increased vegetable yields but also led to issues such as soil degradation, nutrient imbalance and water wastage. The 1990s marked a shift toward sustainability with the introduction of tissue culture techniques, biofertilizers and biopesticides. The real transformation occurred in the 2000s with the integration of GPS, GIS, soil sensors, and early Internet of Things (IoT) applications.

Challenges in Traditional Vegetable Farming

Despite technological advancements, a large proportion of Indian vegetable farmers still rely on conventional practices. Traditional vegetable farming faces several interconnected challenges. Inefficient water management results in over- or under-irrigation, leading to yield losses, salinity problems and groundwater depletion. Fertilizer mismanagement causes nutrient imbalance, soil acidity and environmental pollution. Vegetable crops are also prone to pests and diseases, but lack of timely monitoring often leads to blanket pesticide applications, increasing production costs and residue problems. Labor scarcity and rising wages further reduce profitability. Additionally, limited technological integration, inadequate data availability and poor market linkages make vegetable farming a high-risk enterprise).

Precision farming offers practical solutions to overcome these constraints by optimizing resource use and improving decision-making

Need for Precision Farming in Vegetables

Vegetable cultivation is characterized by high input use, frequent intercultural operations, perishability, and market price fluctuations. Narayan and Narayan (2014) highlighted that vegetables are among the most risk-prone agricultural enterprises due to their sensitivity to weather, pests, and management errors. Precision farming becomes essential to reduce these risks by enabling timely interventions, uniform crop growth, and efficient input application

Major Precision Farming Techniques in Vegetable Production

Global Positioning System (GPS)

GPS technology enables accurate identification of field boundaries, soil variability, weed infestation, and pest incidence. GPS-guided farm machinery allows precise operations such as fertilizer placement, irrigation scheduling, and crop monitoring. Farmers can revisit problematic field zones for corrective measures, thereby reducing input wastage and improving crop performance

Geographical Information System (GIS)

GIS plays a critical role in spatial analysis and decision support. By integrating soil fertility data, crop performance records, climate information, and yield maps, GIS helps farmers visualize field variability. In vegetable production, GIS is extensively used for soil nutrient mapping, land-use planning, climate risk assessment, infrastructure planning, and market logistics. GIS-based nutrient maps support site-specific fertilizer recommendations, reducing costs and improving sustainability

Remote Sensing

Remote sensing technologies provide real-time information on crop health over large areas. Vegetation indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) help assess crop vigor, detect nutrient deficiencies, identify pest and disease hotspots, and monitor environmental stress. When integrated with GIS, remote sensing enhances decision-making for precision input management and large-scale crop surveillance

Variable Rate Technology (VRT)

Variable Rate Technology enables differential application of water, fertilizers, pesticides and seeds based on field variability. Prescription maps divide fields into management zones, ensuring the right input at the right rate and location. Advanced VRT systems use real-time sensors to monitor crop health and soil moisture, leading to reduced input costs, improved uniformity and enhanced operational efficiency

Yield Monitoring and Mapping

Yield monitoring is a cornerstone of precision agriculture. In vegetable crops, yield maps generated using UAV-mounted multispectral sensors provide insights into spatial yield variability. Yield mapping supports improved management decisions, cultivar evaluation, alternative yield estimation methods, and reduction of post-harvest

Drone Technology

Drone technology has revolutionized vegetable farming by enabling rapid crop monitoring, early stress detection, and site-specific spraying. Drones can cover 10-15 times more area than conventional methods, reducing labor requirements. Studies indicate a 20-40% reduction in fertilizer and pesticide use through drone-based applications, while improving farmer safety and lowering production costs (Mahasneh, 2024)

Robotics in Vegetable Production

Robotics is transforming labor-intensive operations in vegetable farming. Precision sowing and transplanting robots ensure uniform plant population and reduce seed wastage. Automated weed management systems reduce herbicide use by 80-90%. Harvesting and sorting robots powered by artificial intelligence reduce labor dependency by 50-70% while improving market quality and grading efficiency (Wang et al., 2022)

Internet of Things (IoT)

IoT-based systems enable continuous monitoring of soil moisture, temperature, humidity, and crop conditions. Smart drip irrigation systems automatically regulate water supply based on sensor feedback. Field experiments in eggplant demonstrated that sensor-based drip irrigation used less water while producing higher yields compared to crop evapotranspiration (ETc) - based irrigation

Hydroponics and Aeroponics

Hydroponics and aeroponics are advanced soilless cultivation systems gaining popularity in urban and protected environments. These systems reduce water use by up to 70%, eliminate soil-borne diseases and produce uniform, high-quality vegetables. Aeroponics offers faster growth and disease-free planting material but requires higher technical expertise and investment (Singh, 2023).

Scope of Precision Farming in India

Precision farming offers immense scope in Indian vegetable production due to high technology responsiveness of vegetables, rising demand for quality produce, and increasing pressure on natural resources. Precision technologies enhance productivity, profitability and sustainability, particularly in semi-arid and resource-poor regions

Government Initiatives and Adoption Trends

Government schemes such as Pradhan Mantri Krishi Sinchayee Yojana (PMKSY), Sub-Mission on Agricultural Mechanization (SMAM), and Namo drone didi Scheme are accelerating the adoption of precision farming technologies. State-wise adoption data shows gradual uptake of GPS, remote sensing, IoT sensors, and VRT equipment, with Punjab, Maharashtra and Karnataka leading the way (Singh, 2025).

Future Prospects and Way Forward

The future of precision farming in vegetables lies in affordable smart technologies, AI-driven decision systems, strengthened digital agriculture platforms, and farmer capacity building. Public-private partnerships and crop-specific precision models will further enhance adoption. Addressing challenges related to infrastructure, connectivity, and skill development will be critical for scaling precision farming across India

Conclusion

Precision farming represents a paradigm shift in vegetable production by enabling data-driven, site-specific management. Integration of GPS, GIS, remote sensing, IoT, drones, robotics and soilless cultivation systems can significantly improve productivity, reduce costs, conserve resources and enhance sustainability with strong policy support and rapid technological advancement, precision farming has the potential to transform Indian vegetable agriculture and ensure long-term food and nutritional security.

References

1. Mahasneh, H. (2024). Drones in Agriculture: Real-World Applications and Impactful Case Studies. *Journal of Natural Science Review*, 2(Special. Issue), 643-656
2. Nabi, A. (2017). Ambreen Nabi, Dr Sumati Narayan, Baseerat Afroza, Faheema Mushtaq, Shahnaz Mufti, Ummyiah HM and Ajaz Malik. *Journal of Pharmacognosy and Phytochemistry*, 6(6), 370-375.
3. Singh, B. (2023). New systems of vegetable production: Protected cultivation, hydroponics, aeroponics, vertical, organic, microgreens. In *Vegetables for Nutrition and Entrepreneurship* (pp. 31-56). Singapore: Springer Nature Singapore.
4. Singh, P. (2025). Precision Agriculture: Reshaping the Future of Indian Farmers.
5. Zhiheng Wang, Yi Xun, Yingkuan Wang, Qinghua Yang. Review of smart robots for fruit and vegetable picking in agriculture[J]. *International Journal of Agricultural and Biological Engineering*, 2022, 15(1): 33-54