

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 03, Issue: 01 (January, 2026)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Microbial Bioremediation: A Sustainable Strategy for Reclaiming Salt-Affected Soils

Chavan Nishigandha Satish¹, Kadam Dhiraj Madhav¹ and *P. Anusha²

¹PhD Research Scholar, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, College of Agriculture, VNMKV, Parbhani, India

²Ph.D Scholar, Professor Jayashankar Telangana Agricultural University (PJTAU), Hyderabad, India

*Corresponding Author's email: pabbu anusha111@gmail.com

Soil salinity is a major abiotic stress affecting agricultural productivity worldwide. Salt-affected soils are characterized by the accumulation of soluble salts, primarily sodium (Na^+) and chloride (Cl^-), which lead to poor soil structure, reduced water availability, and impaired nutrient uptake. Globally, over 800 million hectares of land are affected by salinity, causing significant reductions in crop yields and threatening food security. Traditional reclamation methods, such as chemical amendments (gypsum, sulfur) and intensive leaching with freshwater, are often expensive, labor-intensive, and environmentally unsustainable. In this context, microbial bioremediation—using beneficial microorganisms to mitigate soil salinity—has emerged as an effective, eco-friendly, and cost-efficient strategy for restoring productivity in salt-affected soils.

Microbial Role in Mitigating Soil Salinity

Microorganisms, particularly halotolerant and halophilic bacteria and fungi, have evolved remarkable adaptations to survive under high salinity. They contribute to soil reclamation by improving nutrient availability, enhancing soil structure, and supporting plant growth under stress conditions. Key microbial functions include:

1. Exopolysaccharide (EPS) Production: Many halotolerant bacteria secrete EPS, which binds sodium ions and prevents soil particle dispersion. EPS improves soil aggregation, water retention, and aeration, creating favorable conditions for crop growth.
2. Plant Growth-Promoting Activities: Salt-tolerant microbes synthesize phytohormones such as indole acetic acid (IAA) and gibberellins, solubilize phosphates, and fix atmospheric nitrogen. These activities support plant growth and enhance salt tolerance.
3. Ionic Homeostasis: Certain microbes can uptake toxic sodium ions and release essential ions like potassium and calcium, helping maintain ionic balance in the rhizosphere and reducing salt stress on plants.
4. Enzymatic Detoxification: Microbial enzymes can degrade or transform harmful salts and other toxic compounds, thereby reducing their adverse effects on plants and soil microbial communities.

Several studies have demonstrated that inoculation with halotolerant microbes can significantly improve crop germination, growth, and yield in saline soils. For instance, *Pseudomonas*, *Bacillus*, and *Azospirillum* species are widely reported for their ability to promote plant growth under saline conditions.

Mechanisms of Microbial Bioremediation

Microbial bioremediation of salt-affected soils relies on a combination of physical, chemical, and biological mechanisms:

1. Bioaugmentation: Introducing selected halotolerant microbial strains accelerates salt mitigation, improves soil fertility, and restores microbial diversity.
2. Biostimulation: Supplying organic substrates or nutrients enhances the growth and activity of native microbial populations, thereby increasing natural salt reclamation processes.
3. Soil Structure Improvement: Microbial EPS and biofilms bind soil particles together, reducing bulk density, increasing porosity, and facilitating leaching of excess salts.
4. Enhancement of Soil Enzymatic Activity: Microbes increase soil enzymatic activity, including urease, phosphatase, and dehydrogenase, which improve nutrient cycling and overall soil fertility.
5. Organic Matter Decomposition: Microbial decomposition of organic residues improves soil organic carbon content, which buffers salinity effects and enhances water-holding capacity.

These mechanisms not only reduce soil salinity but also restore soil health, making microbial bioremediation a multifaceted approach to sustainable agriculture.

Advantages of Microbial Bioremediation

Microbial approaches offer multiple advantages over conventional chemical methods:

- Environmentally Sustainable: Avoids excessive use of chemical amendments, preventing secondary soil and water pollution.
- Cost-Effective: Reduces dependence on expensive inputs such as gypsum and freshwater for leaching.
- Enhanced Soil Fertility: Increases microbial diversity, enzymatic activity, and nutrient availability.
- Resilient to Stress Conditions: Salt-tolerant microbes can survive extreme conditions and maintain soil function.
- Synergy with Crops: Certain microbes form symbiotic relationships with plants, enhancing salt tolerance and overall productivity.

Additionally, microbial bioremediation can be integrated with other sustainable practices, such as organic amendments, crop rotation, and cultivation of salt-tolerant crops, to maximize reclamation efficiency.

Challenges and Future Prospects

Despite its promise, microbial bioremediation faces several challenges:

- Microbial Survival: Microbes may struggle to survive in highly saline or harsh field conditions without proper formulation or protection.
- Variable Field Performance: Laboratory success does not always translate to consistent field performance due to soil heterogeneity and environmental factors.
- Need for Site-Specific Strains: Effective microbial inoculants often require adaptation to local soil and climatic conditions.
- Scale-Up and Commercialization: Developing cost-effective bioformulations and delivery methods is critical for large-scale adoption.

Future research should focus on isolating robust halotolerant strains, developing biofertilizer formulations, and integrating microbial approaches with modern agronomic practices. Advances in omics technologies (metagenomics, transcriptomics) can also help identify microbial consortia with superior salt mitigation potential. Overall, microbial bioremediation represents a sustainable, eco-friendly, and economically viable solution for reclaiming salt-affected soils and ensuring long-term agricultural productivity.

Conclusion

Microbial bioremediation is a promising strategy to combat soil salinity, offering environmental, economic, and agronomic benefits. By harnessing the natural capabilities of halotolerant microorganisms, farmers can restore soil fertility, improve crop productivity, and contribute to sustainable agriculture. As global challenges like land degradation and food

security intensify, microbial-based solutions provide a practical pathway for reclaiming salt-affected soils in an eco-friendly and efficient manner.

References

1. Qadir, M., Quillérou, E., Nangia, V., et al. (2014). Economics of salt-induced land degradation and restoration. *Natural Resources Forum*, 38(4), 282–295.
2. Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. *Functional Plant Biology*, 37(7), 613–620.
3. Egamberdieva, D., Wirth, S., Behrendt, U., et al. (2017). Salt-tolerant plant growth-promoting bacteria for enhancing crop productivity in saline soils. *Frontiers in Microbiology*, 8, 2276.