

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 12 (December, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Host Plant Resistance to Lepidopteran Insects in Vegetable Legumes: An Eco-friendly Approach for Sustainable Crop Protection

*Dr. Mirala Sruthi

Contractual Teacher, College of Horticulture, Malyal, SKLTGHU, India

*Corresponding Author's email: shruthi.mirala@gmail.com

Vegetable legumes such as pigeonpea, cowpea, mung bean, urd bean, and field bean form a vital part of our diet as they are rich in proteins, vitamins, and minerals. They are also important cash crops for farmers across India and many tropical countries. However, these crops are constantly attacked by a wide range of insect pests, which reduce yield and quality. Among them, lepidopteran insects (caterpillars or pod borers) are the most destructive. Farmers often depend heavily on chemical insecticides to control these pests. While pesticides give quick results, they also bring problems such as high cost, pest resistance, residue issues, and harm to beneficial insects. To overcome these challenges, researchers are focusing on host plant resistance (HPR) the natural ability of crop plants to tolerate or resist insect attack. This eco-friendly strategy reduces pesticide use and ensures safer and sustainable vegetable legume production.

Major Lepidopteran Pests in Vegetable Legumes

1. *Helicoverpa armigera* (Gram pod borer)

- The most destructive pest of pigeonpea, chickpea, and cowpea.
- Caterpillars feed on leaves, flowers, and pods, causing severe yield loss.

2. *Maruca vitrata* (Spotted pod borer)

- A serious pest of cowpea, mung bean, and field bean.
- The larvae web flowers and pods, leading to poor seed set and damaged pods.

3. *Spodoptera litura* (Tobacco caterpillar / Pod borer)

- Polyphagous pest attacking several legumes.
- Feeds gregariously in early stages, later damaging foliage and pods.

4. Other pests such as *Etiella zinckenella* (bean pod borer) and *Achaea janata* occasionally cause localized damage.

Losses caused by these pests can range between 30–80%, depending on the season, crop variety, and management practices.

What is Host Plant Resistance?

Host plant resistance (HPR) is the inherited ability of a plant variety to reduce pest damage by affecting insect survival, growth, or reproduction. Some varieties naturally have traits like hairy leaves, tough pod walls, or chemicals that deter insects.

HPR works through three main mechanisms:

1. Antixenosis (Non-preference): discourages insects from feeding or egg-laying.
2. Antibiosis: plant chemicals affect insect survival and development.
3. Tolerance: plants can withstand pest damage without significant yield loss.

Examples of Resistant Sources in Vegetable Legumes

- Pigeonpea: Varieties with tough pod walls, dense trichomes, and high levels of phenolic compounds show resistance to *Helicoverpa*.

- Cowpea: Lines with long, narrow pods and rough pod surfaces exhibit resistance to *Maruca vitrata*.
- Mung bean & Urd bean: Compact plant type and pod wall hardness show moderate resistance.
- Field bean: Local landraces show resistance due to flower color and pod architecture.

Research institutions such as ICRISAT, IIHR, IIPR, and state agricultural universities have identified resistant sources.

Advantages of Using Resistant Varieties

- Eco-friendly: Reduces pesticide use.
- Cost-effective: Saves money on insecticides.
- Durable: Long-lasting resistance when combined with IPM.
- Safe produce: Low or no pesticide residues.
- Compatibility: Works well with other eco-friendly practices.

Integration with Other Practices

Host plant resistance alone may not completely control lepidopteran pests. However, when combined with other eco-friendly measures, it gives excellent results:

- Grow resistant/tolerant varieties.
- Use bird perches to encourage predators.
- Release *Trichogramma* parasitoids and *Helicoverpa* NPV sprays.
- Apply neem seed kernel extract.
- Avoid indiscriminate chemical sprays.

This integrated approach forms the backbone of sustainable pest management.

Challenges in Developing Resistant Varieties

- Pest variability: Different insect strains show different feeding preferences.
- Complex genetics: Resistance traits controlled by multiple genes.
- Yield penalty: Resistant lines may sometimes yield less.
- Climate change: Alters pest incidence and resistance effectiveness.

Conclusion

Lepidopteran insects continue to pose a serious threat to vegetable legume production. Reliance on chemical control is neither economical nor sustainable. Host plant resistance offers a long-term, eco-friendly, and farmer-friendly solution. By choosing resistant varieties and combining them with integrated pest management, farmers can achieve higher yields, reduce costs, and produce safer food. Strengthening breeding programs, promoting resistant varieties, and creating farmer awareness will be the key to sustainable vegetable legume production.