

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 12 (December, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Work Physiology in Ergonomics: Theory, Models and Core Formulae

*Ritika¹ and Dr. Promila Krishna Chahal²

¹M.Sc. Scholar, Department of Resource Management and Consumer Science, I.C. College of Community Science, CCS HAU, Hisar, Haryana, India

²Assistant Professor, Department of Resource Management and Consumer Science, I.C. College of Community Science, CCS HAU, Hisar, Haryana, India

*Corresponding Author's email: sheoranritika501@gmail.com

Work physiology represents a fundamental scientific area within ergonomics that studies how the human body functions and adapts during physical labour. It combines concepts from anatomy, physiology, biomechanics, and occupational health to measure workload, fatigue, and recovery patterns. By applying work physiology principles, ergonomists can design tasks that align with human capabilities, ultimately enhancing efficiency, safety, and overall well-being. This article offers a comprehensive theoretical analysis of work physiology's role in ergonomics, details important physiological and ergonomic models, and introduces essential formulas commonly utilised in workplace research and evaluation.

Keywords: Work physiology, ergonomics, physical workload, fatigue, cardiovascular strain, energy expenditure

Introduction

Ergonomics aims to enhance the interaction between humans and their work systems. Among its various specialities, work physiology is crucial for understanding the long-term effects of physical labour on the human body. In work settings, especially in agriculture, manufacturing, construction, healthcare, and household tasks, people encounter differing levels of muscle exertion, postural demands, and environmental pressures.

Work physiology offers a scientific framework for assessing whether a task is within acceptable physiological limits or is excessively demanding. When the demands of the job surpass physiological capabilities, workers may face premature fatigue, decreased productivity, and a heightened risk of musculoskeletal issues and cardiovascular strain. Thus, incorporating work physiology into ergonomic design is vital for promoting sustainable work performance and ensuring long-term occupational health.

Theoretical Foundations of Work Physiology

Concept of Physical Work and Workload

Physical labour is characterised as any task that requires muscle engagement and leads to energy usage beyond the resting state. In the field of ergonomics, workload signifies the complete physiological demand placed upon an individual by a specific task, including:

- Muscular force and repetition
- Postural requirements (static or dynamic)
- Duration and frequency of work
- Environmental conditions such as heat, cold, and humidity

The distribution of workload varies among individuals; the same assignment might feel manageable for one employee while overwhelming for another because of variations in physical fitness and adaptability.

Physical Work Capacity (PWC)

Physical Work Capacity indicates the highest level of work that a person can undertake without experiencing significant physiological stress. It is strongly associated with aerobic capacity (VO_2 max) and the efficiency of the cardiovascular system.

Determinants of PWC include:

- Age and sex-related physiological differences
- Body size and composition
- Level of habitual physical activity and training
- Nutritional and health status
- Acclimatisation to environmental stress.

In ergonomic design, activities are planned to use only a small portion of a person's physical work capacity to promote safety and sustainability.

Physiological Responses to Physical Work

Cardiovascular Responses: As work intensity increases, heart rate and stroke volume rise to meet the increased oxygen demand of working muscles. Cardiac output increases proportionally with workload until maximal capacity is approached.

Respiratory Responses: Pulmonary ventilation increases through both respiratory rate and tidal volume. Oxygen uptake (VO_2) increases linearly with work intensity during submaximal work, making it a reliable indicator of metabolic demand.

Muscular and Metabolic Responses: Active muscles increase ATP turnover. At low to moderate intensities, energy is supplied aerobically. With increasing intensity or prolonged static work, anaerobic metabolism contributes, leading to lactate accumulation and fatigue.

Fatigue: Ergonomic Perspective

Fatigue is defined as a temporary and reversible reduction in the ability to perform work. From an ergonomic standpoint, fatigue is a protective mechanism signalling overload.

Types of fatigue include:

- Local muscular fatigue: Occurs in specific muscle groups during repetitive or static work
- General fatigue: Involves the whole body and cardiovascular system
- Unchecked fatigue contributes to errors, accidents, and long-term occupational disorders.

Models of Work Physiology in Ergonomics

Energy Expenditure Model

Work intensity can be classified according to metabolic energy expenditure, typically expressed in kilocalories per minute (kcal/min) or kilojoules per minute (kJ/min). This model is particularly valuable in evaluating agricultural and industrial tasks, where physiological strain and occupational safety are closely linked to workload.

- Light work (< 2.5 kcal/min): Activities requiring minimal physical effort, often involving sitting or light standing tasks.
- Moderate work (2.5–5.0 kcal/min): Tasks involving sustained movement or moderate lifting, common in routine agricultural operations.
- Heavy work (5.0–7.5 kcal/min): Physically demanding tasks such as continuous manual labour, ploughing, or carrying loads.
- Very heavy work (> 7.5 kcal/min): Extremely strenuous activities, often involving repetitive heavy lifting or prolonged exertion under challenging environmental conditions.

Cardiovascular Load Model

The Cardiovascular Load Model is a recognised method in work physiology and ergonomics used to assess physiological strain during job-related activities. In this model, heart rate (HR) acts as an indirect yet dependable measure of the body's metabolic and cardiovascular reactions to physical labour.

As muscular activity increases, heart rate rises to accommodate the heightened oxygen and energy demands of active muscles. When heart rate stays consistently elevated beyond acceptable thresholds for an extended duration, it signifies that the workload surpasses the individual's physiological limits. Such excessive cardiovascular strain can result in premature fatigue, diminished productivity, and a heightened risk of cardiovascular and musculoskeletal issues.

A fundamental premise of the cardiovascular load model is the direct relationship between heart rate and oxygen consumption (VO_2) during steady-state work conditions. In the context of moderate and continuous workloads, oxygen uptake increases in proportion to work intensity, prompting a corresponding rise in heart rate to ensure sufficient oxygen delivery. Due to this predictable connection, heart rate can serve as a practical alternative measure for oxygen consumption, particularly in field and industrial environments where direct VO_2 measurement is impractical.

Relative Aerobic Strain Model

Relative aerobic strain (RAS) expresses the physiological workload of a task as a percentage of an individual's aerobic capacity (VO_2 max). By relating task oxygen demand to a person's maximal aerobic potential, it inherently accounts for inter-individual differences such as age, sex, body size, fitness level, and health status. Consequently, RAS provides a standardised and comparable measure of workload, making it highly suitable for ergonomic evaluation, task comparison, and work design across different workers and occupations.

Sustained industrial work should generally not exceed 35–40% of VO_2 max.

Work–Rest Cycle Model

Work-rest scheduling relies on the premise that physiological recovery is crucial for sustaining performance. The amount of rest needed rises with:

- Increased work intensity
- Static muscle exertion
- Unfavourable thermal conditions

This approach is widely utilised for evaluating heat stress and manual labour.

Static and Dynamic Work Model

Dynamic work is defined by the rhythmic tightening and loosening of muscles, which promotes proper blood circulation, effective oxygen transportation, and the prompt elimination of metabolic waste. This physiological process aids in postponing muscular fatigue and enables prolonged performance over extended periods. On the other hand, static work involves prolonged muscle tension with minimal or no relaxation. Even at relatively low force levels, static loading compresses blood vessels, limits circulation, and speeds up the build-up of metabolic waste, leading to quicker fatigue, discomfort, and a higher likelihood of musculoskeletal injuries.

As a result, ergonomic strategies aim to reduce static loading by implementing task redesign techniques such as:

- Encouraging variations in posture and movement
- Introducing job rotation and short breaks
- Modifying workstation height and reach distances
- Utilising supportive tools and mechanical aids

These strategies assist in restoring circulation, alleviating physiological stress, and improving worker comfort, safety, and productivity.

Core Formulae in Work Physiology

Energy Expenditure

Energy expenditure during physical activity or work can be estimated from oxygen consumption using the relationship:

$$\text{Energy Expenditure (kcal/min)} = VO_2 (\text{L/min}) \times 5$$

This conversion is based on the average caloric equivalent of oxygen, where approximately 5 kilocalories of energy are released per litre of oxygen consumed during mixed substrate utilisation (combined oxidation of carbohydrates and fats). It provides a practical and widely

accepted method for estimating metabolic cost in work physiology and ergonomic assessments, particularly under steady-state aerobic conditions.

Oxygen Consumption (VO_2)

Oxygen consumption (VO_2) indicates the amount of oxygen the body uses per unit of time during physical exertion or tasks. It serves as a direct measure of aerobic metabolic activity and thus indicates the metabolic cost associated with work.

$VO_2 = \text{Pulmonary ventilation} \times (\text{Fraction of } O_2 \text{ inhaled} - \text{Fraction of } O_2 \text{ exhaled})$ Where:

- Pulmonary ventilation refers to the volume of air inhaled and exhaled per minute
- Fraction of O_2 inhaled is approximately 20.93%
- Fraction of O_2 exhaled is around 16–17% during moderate activity

Ergonomic and Physiological Importance

- VO_2 offers a measurable indication of energy requirements during work
- It closely correlates with energy expenditure and the strain placed on the cardiovascular system
- It helps categorise work into light, moderate, and heavy classifications

The Gold Standard in Work Physiology

VO_2 is considered the gold standard in work physiology due to its ability to:

- Directly indicate metabolic energy generation
- Facilitate precise comparisons of workloads between individuals and tasks
- Serve as a foundation for models like relative aerobic strain and energy expenditure calculations

Practical Considerations

- Direct measurements necessitate gas analysis equipment, which can restrict field application
- Typically, predictive approaches using heart rate are utilised in ergonomic research when direct VO_2 measurement is impractical

In summary, oxygen consumption (VO_2) is a crucial factor in evaluating physiological workload and in creating ergonomically safe and effective work environments.

Relative Aerobic Strain (RAS)

Relative Aerobic Strain (RAS) measures the physiological workload by expressing the oxygen requirement of a task as a percentage of an individual's maximal aerobic capacity ($VO_2 \text{ max}$).

$RAS (\%) = (\text{Working } VO_2 / VO_2 \text{ max}) \times 100$

Interpretation

- Lower RAS values signify enhanced physiological adaptation, superior aerobic fitness, and a greater ability to perform the task with reduced strain.
- Higher RAS values indicate elevated cardiovascular and metabolic stress, resulting in faster fatigue and diminished work sustainability.

Ergonomic Significance

- Enables personalised assessment of workload by considering variations in fitness and capacity.
- Supports the comparison of tasks and workers on a standardised physiological scale.
- Helps determine if a task is within acceptable parameters for sustained work.

Application

RAS is extensively utilised in work physiology and ergonomics to assess task demands, develop work-rest schedules, and ensure that occupational activities stay within safe and sustainable physiological limits.

Cardiac Cost of Work (CCW)

The Cardiac Cost of Work (CCW) is a straightforward and commonly utilised measure to assess the extra cardiovascular demand a task places on the body compared to the resting condition.

$CCW = \text{Heart Rate During Work} - \text{Heart Rate at Rest}$ $CCW = \text{Heart Rate During Work} - \text{Heart Rate at Rest}$

Interpretation

- An elevated CCW signifies increased cardiovascular stress and a higher physiological burden of the task.
- A reduced CCW indicates that the task can be completed with little additional cardiac exertion.

Ergonomic and Physiological Importance

- Captures the additional heart rate response related to work activity
- Valuable for analysing manual, repetitive, and physically intensive tasks
- Facilitates comparison of cardiovascular load across different tasks and individuals

Application

CCW is frequently used in work physiology and ergonomics for:

- Evaluating the severity of the workload
- Creating work–rest schedules
- Identifying tasks that may benefit from mechanisation or ergonomic improvements

In summary, CCW offers a practical and user-friendly assessment of cardiovascular demand during occupational activities.

Total Cardiac Cost of Work (TCCW)

Total Cardiac Cost of Work (TCCW) refers to the total cardiovascular strain encountered by a worker throughout a specific activity period, usually a work session or an entire shift.

$TCCW = CCW \times \text{Duration of work (minutes)}$ Where:

- CCW (Cardiac Cost of Work) = Working heart rate – Resting heart rate
- Duration of work = total time spent on the task

Interpretation

- Elevated TCCW values signify increased cumulative cardiovascular strain and a higher risk of fatigue.
- Even moderate CCW values can lead to a substantial TCCW when the work duration is extended.

Ergonomic Significance:

- Addresses the time-sensitive aspect of physiological stress, which single-point heart rate measurements may overlook.
- Valuable for contrasting tasks with various intensity-duration combinations.
- Assists in assessing the overall physiological load of a complete work shift.

Applications:

- Developing and refining work–rest schedules.
- Evaluating prolonged agricultural and industrial activities.
- Recognising tasks that necessitate job rotation, rest breaks, or mechanisation.

In the fields of work physiology and ergonomics, TCCW serves as an important measure to ensure that both the intensity and duration of work stay within safe and manageable limits.

Physical Fitness Index (PFI)

The Physical Fitness Index (PFI) serves as a recognised measure of cardiovascular efficiency and recovery ability, typically obtained from the Harvard Step Test. It assesses the rate at which the heart rate returns to baseline levels after a standardised exercise routine.

$PFI = (\text{Exercise duration in seconds} \times 100) / [2 \times (HR_1 + HR_2 + HR_3)]$

Higher PFI values indicate superior recovery capacity and cardiovascular fitness. Where:

- Exercise duration refers to the total time the participant completes the step test.
- HR_1 , HR_2 , HR_3 represent the heart rates recorded during recovery, usually at the first, second, and third minutes following exercise.

Interpretation:

- Higher PFI scores indicate improved cardiovascular fitness, effective circulatory response, and enhanced recovery capabilities.
- Lower PFI scores are indicative of slower recovery and diminished aerobic fitness.

Ergonomic and Physiological Significance:

- Useful for evaluating work capacity and determining suitability for physically demanding roles.
- Assists in categorising fitness levels among employees or study subjects.
- Aids in making ergonomic choices connected to task assignment and workload thresholds.

Application:

PFI is frequently utilised in work physiology, ergonomics, and occupational health research due to its straightforward nature, minimal equipment needs, and robust correlation with aerobic fitness and recovery processes.

Acceptable Workload Standards

In continuous industrial operations, cardiovascular strain is typically measured through working heart rate, which is a practical and dependable indicator of physiological load. For healthy individuals, the average acceptable working heart rate during extended tasks should not exceed roughly 110 beats per minute.

Justification

- Heart rates that surpass this threshold signify an increase in cardiovascular strain and a greater oxygen demand.
- Engaging in work for extended periods beyond this limit can result in early onset of fatigue, diminished efficiency, and a heightened risk of health and safety concerns.
- This standard aligns generally with moderate work intensity, which can be sustained over an 8-hour shift without excessive strain.

Ergonomic Considerations

- Activities leading to heart rates exceeding 110 beats per minute should be modified, mechanised, or paired with work–rest cycles.
- Personal attributes such as age, fitness level, and health status should be taken into account, as tolerance may differ among individuals.

Implementation

This guideline is commonly referenced in work physiology and ergonomics for:

- Assessing job demands
- Creating safe work–rest schedules
- Evaluating physiological load across various tasks and professions

Keeping the working heart rate within this acceptable range contributes to ensuring sustainable performance, worker well-being, and long-term productivity.

Applications of Work Physiology in Ergonomics

Work physiology offers a scientific framework for comprehending human capabilities and limitations in a work environment. Its concepts are extensively utilised in ergonomics to improve safety, productivity, and overall worker health across various fields.

Evaluation of agricultural and industrial tasks

Physiological indicators such as heart rate, oxygen uptake, and energy expenditure are employed to evaluate workload and pinpoint tasks that exert excessive physical stress.

Assessment of manual material handling and repetitive work

Work physiology aids in measuring muscular and cardiovascular strain during activities like lifting, carrying, pushing-pulling, and repetitive tasks, which helps recognise high-risk actions.

Design of ergonomically efficient tools and workstations

Information on human strength, posture, and energy expenditure informs the creation of tools and work environments that reduce static loads, awkward postures, and unnecessary exertion.

Development of work–rest schedules

Physiological assessments are used to establish suitable rest intervals, ensuring sufficient recovery and preventing cumulative fatigue during prolonged or strenuous work.

Prevention of fatigue, injuries, and occupational diseases

By maintaining workload within manageable physiological levels, work physiology helps diminish fatigue, musculoskeletal issues, cardiovascular stress, and long-term occupational health concerns. Overall, the integration of work physiology in ergonomics fosters sustainable work design, enhanced productivity, and the long-term health safeguarding of workers.

Conclusion

Work physiology provides the quantitative and theoretical foundation for ergonomic practice. By integrating physiological responses, workload models, and validated formulae, ergonomists can design work systems that respect human limits while enhancing productivity. In labour- intensive and resource-constrained settings, the application of work physiology is critical for sustainable occupational health and performance.

References

1. Astrand, P.O. and Rodahl, K. (1986) *Textbook of Work Physiology: Physiological Bases of Exercise*. 3rd edn. New York: McGraw-Hill.
2. Grandjean, E. (1988) *Fitting the Task to the Man: An Ergonomic Approach*. 4th edn. London: Taylor & Francis.
3. Kroemer, K.H.E., Kroemer, A.D. and Kroemer-Elbert, K.E. (2001) *Ergonomics: How to Design for Ease and Efficiency*. Upper Saddle River, NJ: Prentice Hall.
4. McArdle, W.D., Katch, F.I. and Katch, V.L. (2015) *Exercise Physiology: Nutrition, Energy, and Human Performance*. 8th edn. Philadelphia: Wolters Kluwer.
5. Pheasant, S. and Haslegrave, C.M. (2006) *Bodyspace: Anthropometry, Ergonomics and the Design of Work*. 3rd edn. Boca Raton: CRC Press.
6. Nag, P.K. (2010) *Ergonomics in Small Scale Industries*. Mumbai: Occupational Health and Safety Centre.
7. WHO (1999) *Health and Environment in Sustainable Development*. Geneva: World Health Organization.
8. ACSM (2021) *ACSM's Guidelines for Exercise Testing and Prescription*. 11th edn. Philadelphia: Wolters Kluwer.