

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 12 (December, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

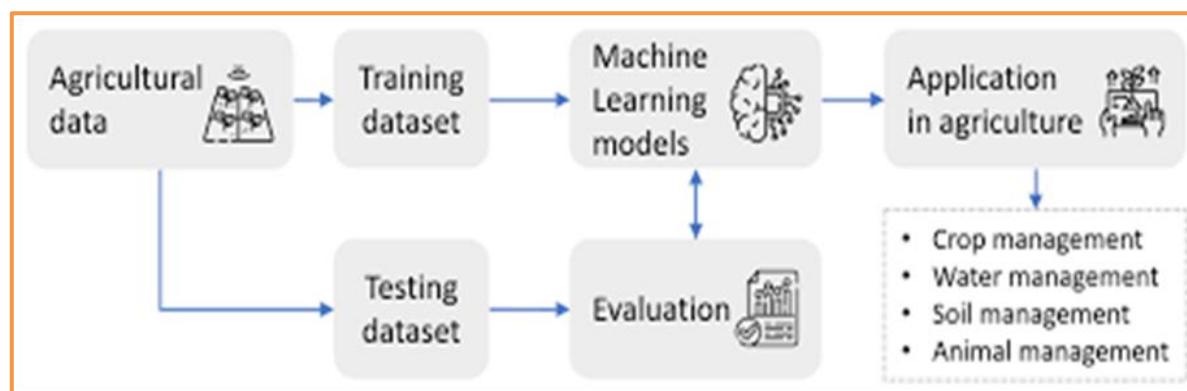
Artificial Intelligence in Agriculture: Transforming Farming for a Sustainable Future

*M Sidharth, T Harini and Dr. Sivakumar K

Department of Agronomy, SRM College of Agricultural Sciences,
Chengalpattu- 603201, Tamil Nadu, India

*Corresponding Author's email: sm8165@srmist.edu.in

India's economy depends on agriculture, but it is experiencing problems it has never seen before. These include changing weather patterns, less natural resources, higher costs for inputs, and a growing population that needs more food. Even while traditional farming methods have been around for a long time, they don't always work well to solve these new problems. In this situation, adding new technologies to farming is no longer just a good idea; it's a must. One of these technologies, Artificial Intelligence (AI), has become a strong tool that could change how farming is done. Artificial intelligence is the ability of computers and machines to do things that usually require human intelligence, like learning from experience, spotting patterns, and making choices. AI helps farmers make quick and well-informed decisions by letting them look at a lot of data on soil, weather, crops, and farm management. AI-powered tools are helping farmers get more done while lowering risks and input costs. These tools can estimate crop yields, find pest and disease outbreaks, and make the best use of irrigation and fertilizer. As more and more people focus on climate-resilient and sustainable agriculture, AI could help make farming more accurate, efficient, and good for the environment.


Evolution of Technology in Agriculture

Agriculture has changed over the years to meet the demands of people, the environment, and new technologies. In the beginning, farming relied heavily on old ways of doing things, human labor, animal power, and information that had been passed down through centuries. Farmers' expertise and observations of natural signs mostly drove their choices of crops, when to plant them, how to water them, and how to keep pests away. Even though these approaches were environmentally friendly, productivity stayed low and depended a lot on the weather. The next big change was when farming became mechanized. Using better equipment, tractors, harvesters, and irrigation pumps cut down on the amount of work people had to do and made more land available for farming. The Green Revolution came just after this phase. It was a turning point in farming, especially in countries like India. High-yielding varieties, chemical fertilizers, insecticides, and guaranteed irrigation systems all helped to greatly increase the amount of food grains produced, which helped to attain food security. However, this period also highlighted issues such as soil degradation, excessive chemical use, and environmental concerns. As information and communication technologies improved, farming moved into the era of precision farming. Farmers may manage their crops and inputs on a site-specific basis thanks to technologies like Global Positioning System (GPS), Geographic Information Systems (GIS), remote sensing, and soil sensors. By using water, fertilizers, and pesticides based on what the crops actually needed, this method made better use of inputs and cut down on waste. In the last few years, farming has moved toward data-driven and smart systems, with AI at the centre of these systems. AI systems can learn from huge amounts of data, spot patterns, and make predictions. This is different from older

technologies that used preset rules. Modern farming is getting smarter, more flexible, and more robust by combining AI with drones, satellites, sensors, and smartphone apps.

Key Components of Artificial Intelligence Used in Agriculture

Artificial intelligence is used in farming by combining numerous smart technologies that work together to gather data, analyze it, and help people make decisions. These parts assist farmers take care of their crops and resources in a way that lowers risks and losses. Machine Learning (ML), which learns from past and present data including weather, soil qualities, crop development patterns, and yield records, is one of the most significant parts. ML models can accurately predict crop yield, suggest the best crops for certain areas, and anticipate when pests and diseases will strike. The more data that is accessible, the better the predictions will be. Computer Vision is another important part that lets machines understand what they see. People in agriculture look at pictures taken by cell phones, drones, or satellites to find out if crops are sick, lacking nutrients, infested with weeds, or ready to be harvested. Early detection lets you take action quickly, which cuts down on crop losses and the need for pesticides. When combined with AI, the Internet of Things (IoT) helps smart farming by constantly collecting data from weather stations, soil moisture sensors, and temperature sensors. AI looks at this information to set up automatic watering, control the conditions in greenhouses, and send out alarms in real time. Big Data analytics and cloud computing are also important parts of AI-based farming systems since they store and process massive amounts of agricultural data and give farmers useful information through digital platforms. Together, these parts change traditional farming into a smart, data-driven, and long-lasting way of farming.

Major Applications of Artificial Intelligence in Agriculture

AI is being used more and more in all parts of farming, from planning before planting to managing the farm after the harvest. AI helps farmers make smart choices, work more efficiently, and lower the dangers of farming by looking at a lot of data and giving them real-time information. Crop monitoring and yield prediction are two of the most important uses of AI. AI systems keep an eye on the health and growth of crops all the time by using data from satellites, drones, and sensors in the field. AI can estimate yields long before harvest by looking at weather patterns, vegetation indices, and soil conditions. This helps farmers plan how to sell their crops and helps governments make decisions about food availability and pricing. AI is also very important for precision farming, which is when water, fertilizers, and pesticides are only used when and where they are needed. This site-specific management lowers input costs, cuts down on pollution, and boosts crop yields, all of which support sustainable agriculture. Finding pests and diseases is another essential use. AI-powered mobile apps employ computer vision and machine learning to find pests, illnesses, and nutrient deficiencies in crop photos. They give early warnings and management advice while cutting down on the usage of pesticides that aren't needed. Another important area is smart irrigation and water management, where AI looks at the weather, soil moisture, and crop water needs to figure out the best times to water. This makes sure that water is used efficiently, which is especially important in areas where water is hard to come by. It helps

crops grow and produce more. AI also helps keep soil healthy and manage nutrients by using soil test data, crop needs, and yield history to suggest balanced fertilizer application, which keeps soil fertility and cuts down on nutrient losses. AI is being utilized more and more in farming machines and robots, like self-driving tractors, robotic weavers, and harvesters. These tools help with labour shortages and make operations run more smoothly. Farmers can get ready for extreme weather occurrences like droughts, floods, and heat waves thanks to AI-based weather forecasting and climate risk management. In general, AI is changing traditional farming into a smart, efficient, and sustainable system that boosts productivity while also conserving the environment.

Role of Artificial Intelligence in Indian Agriculture

Indian agriculture is quite risky since it has many small and marginal farmers, a wide range of agro-climatic conditions, and a large reliance on monsoon rains. In this context, AI is very important for making farms more productive, using resources more efficiently, and enhancing farmers' lives. AI-based mobile apps and digital platforms give farmers location-specific advice by looking at data on the weather, soil, crop stage, and pest problems. AI also helps agriculture that can handle climate change by making accurate weather forecasts and early warning systems that cut down on crop losses from droughts, floods, and heat stress. Smart irrigation, checking the health of the soil, and precise nutrient management all help to use water and fertilizers more efficiently. This helps with problems like nutrient imbalance and groundwater depletion. AI helps with policy planning and food security at the national level by estimating crop areas, predicting yields, and analyzing markets. This makes Indian agriculture more sustainable, resilient, and focused on farmers.

Benefits of Artificial Intelligence in Agriculture

Using artificial intelligence in farming has many benefits that make it more productive, profitable, and environmentally friendly. AI helps farmers make better decisions by using data, which helps them manage their crops and resources better and lowers the risks that come with farming. AI-based crop monitoring, yield prediction, and precision farming make sure that crops grow in the best possible conditions, which leads to greater and more stable yields. Finding pests, illnesses, and nutrient deficiencies early on also helps crops do better and lose less. AI also helps lower the cost of farming by only administering water, fertilizers, and pesticides when and where they are needed, which cuts down on waste and costs. AI-powered machines that automate tasks reduce the need for manual labour and make operations run more smoothly. AI also helps people use natural resources more wisely by

using smart irrigation and fertilizer management systems. This saves water, keeps soil healthy, and cuts down on pollution. Real-time data analysis and predictive models give farmers timely information about the weather, pest outbreaks, and crop conditions, which lets them manage their farms more effectively. AI helps agriculture that is good for the environment and can handle climate change, which leads to long-term food security and better lives for farmers.

Challenges and Limitations of Artificial Intelligence in Agriculture

Even while AI has a lot of potential, it is still not widely used in agriculture, especially in developing nations like India. Small and marginal farmers can't afford AI-based products like sensors, drones, automated machinery, and data platforms because they cost a lot to start. Limited digital literacy, a lack of training options, and insufficient extension support make it even harder to deploy AI technologies effectively. In rural locations, bad infrastructure and unpredictable internet and power make it hard to collect data and give advice in real time. Also, the fact that there isn't enough accurate, consistent, and location-specific agricultural data makes AI-based recommendations less reliable. Farmers are also less likely to share information since they are worried about privacy and control of their data. To get more people to use AI in farming, we need to solve these problems with legislation that help, training programs, better infrastructure, and AI solutions that focus on farmers.

Future Prospects of Artificial Intelligence in Agriculture

As Artificial Intelligence (AI) gets better, it will likely have a big impact on the future of farming by making farming systems more sustainable and able to handle stress. AI will help farmers reduce the damage caused by extreme weather occurrences by giving them accurate weather forecasts, risk assessments, and crop-specific advice. It will also make integrated decision-support systems better by bringing together information about soil health, weather, crop genetics, and farm management. This will help people make decisions that are timely and well-informed. Combining AI with biotechnology and crop improvement initiatives helps speed up the creation of crop varieties that produce a lot and can handle stress. AI-based technologies are becoming easier to get and cheaper because of the rapid expansion of agri-startups, better rural connectivity, youth involvement, and government regulations that encourage them. Overall, AI has a lot of promise to make farming more productive, sustainable, and secure in the long term.

Conclusion

AI is changing modern farming by letting farmers make decisions based on data that boost productivity, make the best use of resources, and lower the risks of climate change, pests, and illnesses. AI is making farming more effective and sustainable by using tools like precision farming, smart irrigation, yield prediction, and climate-resilient techniques. AI helps small and marginal farmers in India by adding to their traditional knowledge and improving their farm revenues and food security. There are still problems like high pricing, low digital literacy, and data difficulties, but ongoing technological improvement and awareness can help. In general, using AI in a responsible and open way has a lot of potential for a strong, long-lasting, and farmer-focused future in agriculture.

References

1. *Artificial Intelligence and Big Data in Agriculture*. FAO, Rome, 2019.
2. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. "Machine Learning in Agriculture: A Review." *Sensors*, 18(8): 2674, 2018.