

Integrated Nutrient Management Approaches for Restoring Soil Fertility and Maximizing Crop Productivity in Degraded Agro-Ecosystems

*Dr. G. Venugopal¹, Dr. B. Rani¹, Dr. Kiran Kumari²,
Battala Sheshagiri³ and Pavankumar A⁴

¹Department of Soil Science and Agricultural Chemistry, Agricultural College, Jagtial, Professor Jayashankar Telangana Agricultural University, Hyderabad, India

²Regional Soil Testing Laboratory, KVK, CCS HAU, Karnal, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India

³Department of Agricultural Economics, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, UP, India

⁴Department of Microbiology, BIRAC, Dharwad, Karnataka, India

*Corresponding Author's email: venugopalguttikonda@gmail.com

Degraded agro-ecosystems are now common in many regions because of continuous monocropping, excessive tillage, imbalanced fertilizer use and low organic matter returns to the soil. These processes lead to nutrient depletion, loss of soil organic carbon, declining biological activity and, ultimately, reduced and unstable crop yields. Integrated Nutrient Management (INM) has emerged as a practical strategy to reverse this decline. By combining organic manures, crop residues, green manures, biofertilizers and judicious doses of mineral fertilizers, INM aims to supply nutrients in a balanced way, rebuild soil health and sustain high productivity.

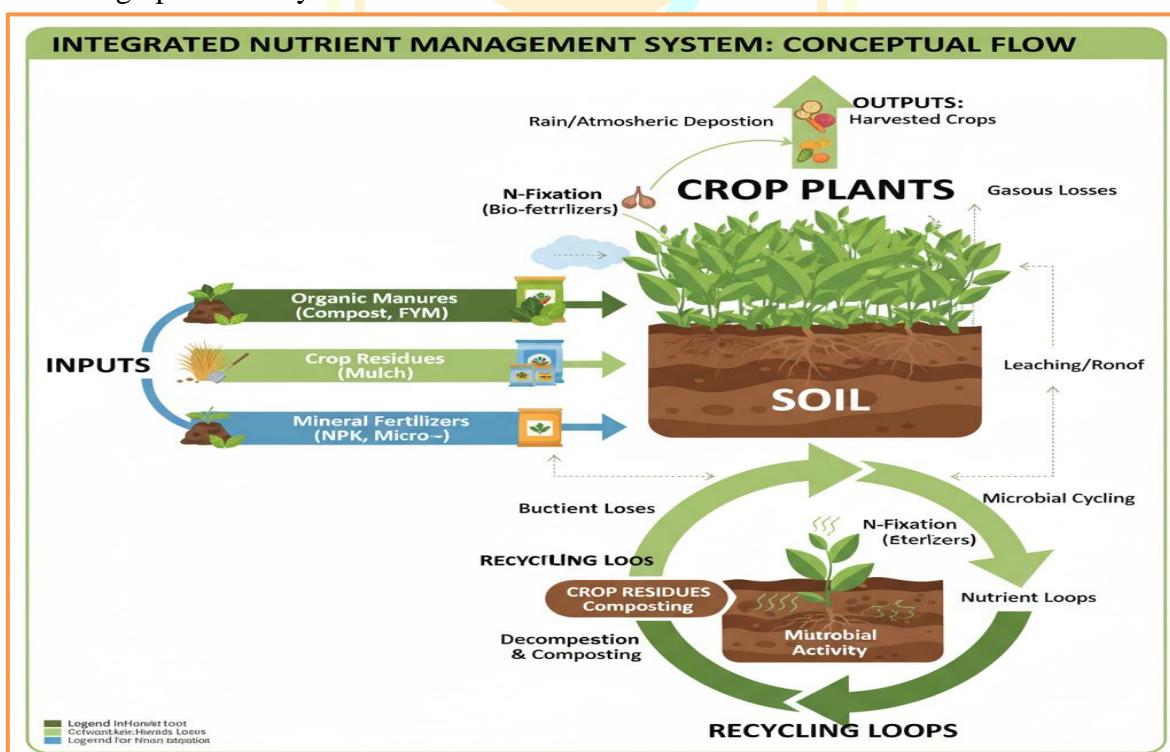
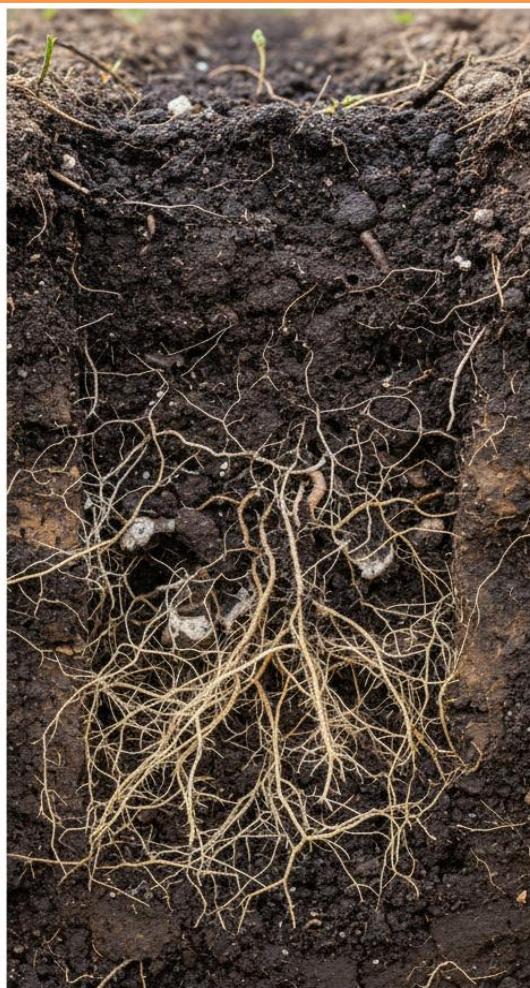


Fig: Nutrient flows in an INM system (inputs: organic manures, crop residues, fertilizers; outputs: crops; recycling loops).


Degraded Agro-Ecosystems: Causes and Consequences

Degraded agro-ecosystems are characterized by low soil organic matter, nutrient imbalances, compaction, erosion and reduced biodiversity. Unsustainable practices such as continuous cereal cropping, residue burning, over-use of nitrogen with little or no phosphorus, potassium and micronutrients, and removal of all biomass from the field accelerate degradation.

Consequences include:

- Declining yields despite higher fertilizer doses.
- Greater susceptibility to drought and heat stress because of poor water-holding capacity.
- Higher risk of erosion and nutrient loss through runoff and leaching.
- Reduced efficiency of applied fertilizers because of poor rooting and low microbial activity.

These problems are especially severe in rainfed and semi-arid regions, where soils are inherently fragile and climate variability is high.

HEALTHY SOIL PROFILE

DEGRADED & COMPACTED SOIL

Concept and Principles of Integrated Nutrient Management

Integrated Nutrient Management can be defined as the planned, site-specific use of all available nutrient sources organic, inorganic and biological to optimize crop productivity while maintaining or improving soil fertility and minimizing environmental risks.

Key principles include:

1. **Balanced nutrition:** Supplying all essential macro- and micronutrients in appropriate proportions rather than focusing mainly on nitrogen.
2. **Complementarity of sources:** Combining organic inputs (which build soil health) with mineral fertilizers (which meet immediate crop demand).
3. **Nutrient recycling:** Returning crop residues, manures and other biomass to the soil.

- Site-specific management:** Adjusting nutrient rates and sources according to soil tests, crop needs and climate.
- Environmental stewardship:** Reducing nutrient losses to water and air and enhancing carbon sequestration.

Major Components of INM

Organic Nutrient Sources

Farmyard manure, compost, green manures, vermicompost and crop residues are central to INM. They improve soil structure, increase cation exchange capacity, buffer pH and provide a slow-release source of nutrients. Repeated applications raise soil organic carbon and stimulate microbial activity, which in turn improves nutrient mineralization and aggregation.

Mineral Fertilizers

While organics are crucial, they often cannot meet the full nutrient demand of high-yielding varieties. Site-specific use of mineral N, P, K and secondary nutrients (S, Ca, Mg) along with micronutrients (Zn, B, Fe, etc.) ensures adequate supply at critical growth stages. Balanced fertilization, guided by soil tests, enhances nutrient use efficiency and reduces wastage.

Biofertilizers and Microbial Inoculants

Biofertilizers such as Rhizobium, Azotobacter, Azospirillum, phosphate-solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) can fix atmospheric nitrogen, solubilize native phosphates and improve root uptake. Their benefits are maximized when used together with organic amendments and moderate fertilizer doses rather than as stand-alone substitutes.

Crop Residue and Green Manure Management

Returning cereal straw, legume haulms and pruning from agroforestry species, along with in-situ green manuring, enhances soil cover and adds both carbon and nutrients. Leguminous green manures, such as sunnhemp or dhaincha, can add substantial biologically fixed nitrogen and improve soil tilth in degraded fields.

Fig: Field with legume green manure crop before incorporation.

Mechanisms of Soil Fertility Restoration under INM

INM improves soil fertility through multiple interacting mechanisms:

- Physical improvements:** Organic additions reduce bulk density, improve aggregation and enhance porosity and water infiltration. This is vital in crusted or compacted degraded soils.
- Chemical improvements:** Higher organic matter increases cation exchange capacity, buffers soil pH and enhances nutrient retention. Combined use of mineral and organic sources also corrects multi-nutrient deficiencies more effectively than either alone.
- Biological improvements:** Greater organic inputs feed soil microorganisms, increasing microbial biomass, enzymatic activity and nutrient cycling. Diverse microbial communities contribute to disease suppression and improved root health.
- Carbon sequestration:** Continuous addition of organic materials and reduced soil disturbance can rebuild soil organic carbon, mitigating climate change while enhancing resilience.

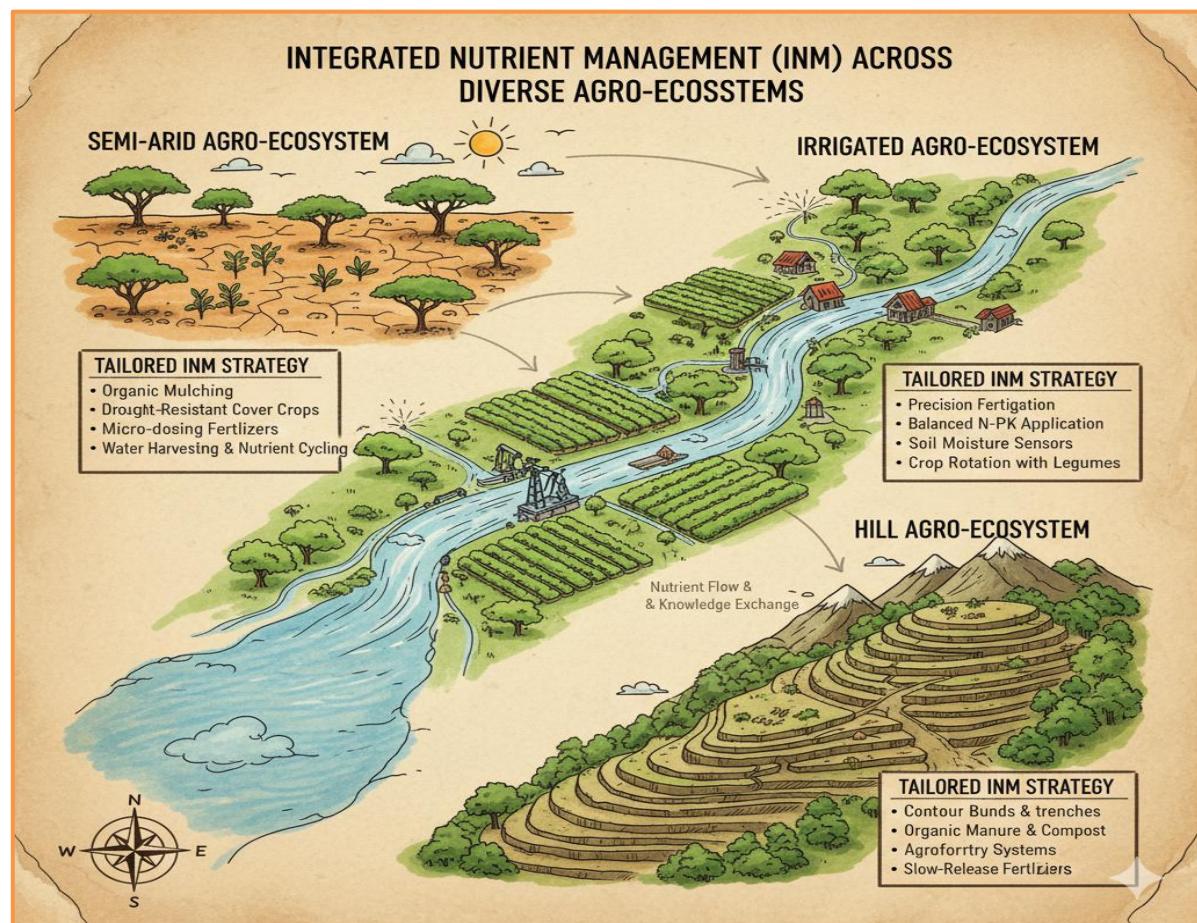
INM and Maximization of Crop Productivity

Degraded soils often respond strongly to INM because multiple constraints are addressed simultaneously. Studies in cereals, pulses and oilseeds show that combinations of 50–75% recommended NPK through fertilizers plus organics and biofertilizers frequently produce yields equal to or higher than 100% NPK alone, with better profitability and soil quality.

Yield benefits arise from:

- Improved root growth and access to water and nutrients.
- Better synchronization between nutrient release and crop demand.
- Reduced lodging and better grain filling due to balanced nutrition.

In water-limited or marginal environments, INM often leads to more stable yields across seasons, because improved soil structure and organic matter increase available water and buffer against short dry spells.


Integrated Nutrient Management in Specific Degraded Agro-Ecosystems

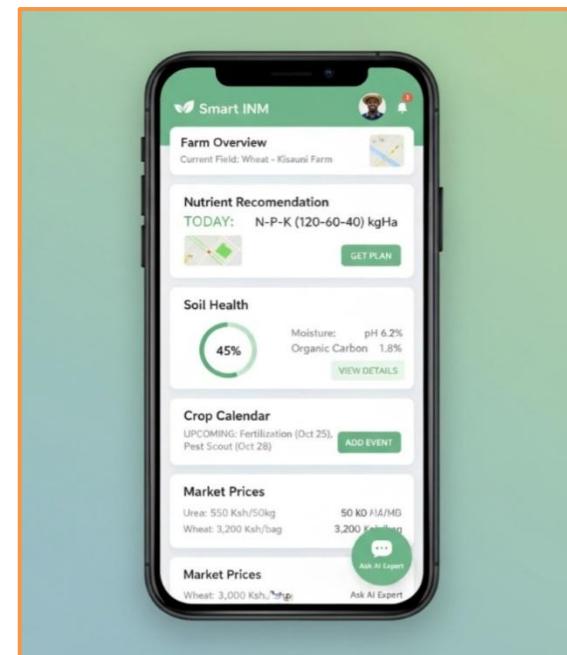
Semi-Arid and Rainfed Regions

In semi-arid landscapes, nutrient depletion and low organic matter are closely linked with low water availability and high erosion risk. INM strategies here favor residue retention, drought-tolerant cover crops, contour bunds and rainwater harvesting, paired with modest fertilizer doses. Integrating tree-based systems (agroforestry) such as scattered leguminous trees or alley cropping adds prunings and litter that contribute nutrients and shade, reduce wind erosion and support livestock fodder, further closing nutrient loops.

Intensively Cultivated Green-Revolution Areas

In high-input irrigated regions, problems include nutrient mining of non-N elements, soil acidification or salinization, and declining factor productivity of fertilizers. INM in such areas focuses on diversified rotations (e.g., including pulses or fodder legumes), recycling on-farm manures, balanced fertilization (including S, Zn, B) and adoption of reduced-tillage practices to conserve residues.

Role of Diversified Cropping Systems in INM


Cropping system design strongly influences nutrient dynamics. Crop rotation, intercropping and inclusion of legumes are core components of nutrient-smart systems. Rotations that alternate deep-rooted and shallow-rooted crops, cereals and legumes, and high- and low-demand crops improve nutrient capture from various soil depths and reduce pest and disease build-up. In degraded soils, legume-based rotations or relay cropping can gradually rebuild nitrogen and organic matter, decreasing dependence on synthetic N over time. Cover crops grown in the off-season protect bare soil, reduce erosion and capture residual nutrients that might otherwise be lost. When incorporated or mulched, they return those nutrients for the next cash crop.

Emerging Tools and Technologies Supporting INM

Modern tools are expanding the potential of INM:

- **Soil testing and decision support systems** provide site-specific fertilizer recommendations and identify micronutrient deficiencies.
- **Remote sensing and digital mapping** can identify variability in soil fertility across fields, supporting variable-rate application.
- **Precision agriculture and sensor technologies** (e.g., handheld chlorophyll meters, mobile apps) help fine-tune N application to crop status.
- **Soil-amending innovations** such as enhanced weathering with finely ground basalt or other silicate rocks simultaneously supply nutrients, raise pH and sequester carbon, showing promise when integrated into broader nutrient strategies.

Digital platforms that integrate soil data, climate information and management options can guide farmers in designing locally adapted INM packages, especially in degraded landscapes where risks are high.

Environmental and Climate Co-Benefits

Besides productivity gains, INM can significantly reduce environmental impacts. Efficient use of fertilizers, supported by organic inputs and better soil structure, can lower nitrous oxide emissions and minimize nitrate leaching. Enhanced organic matter and improved aggregation reduce erosion, sedimentation of waterways and off-site nutrient pollution. Agroforestry, cover cropping and residue retention within INM systems contribute to carbon sequestration and resilience against extreme weather, making degraded agro-ecosystems more climate-resilient over time.

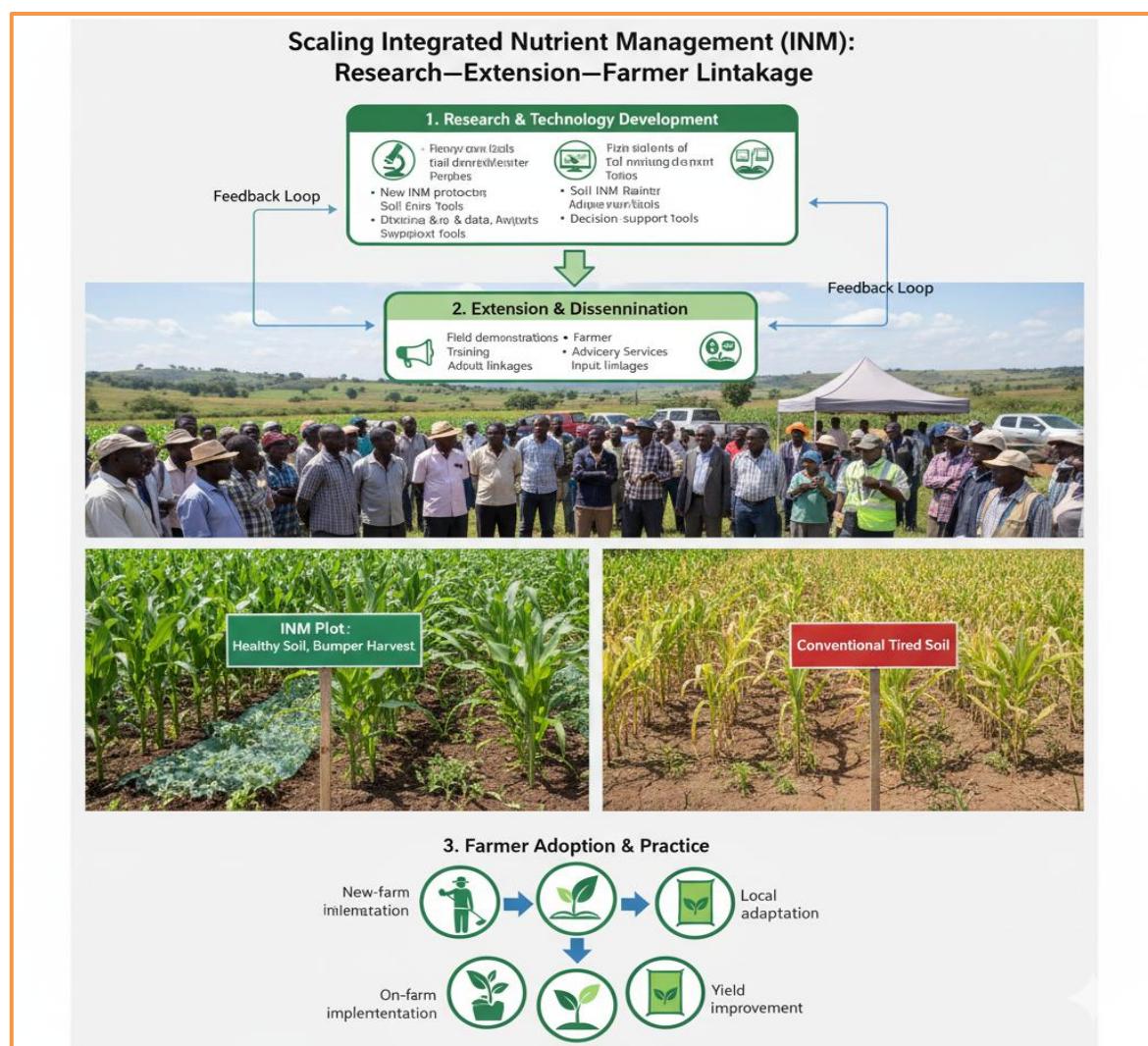
Socio-Economic and Policy Dimensions

Adoption of INM by farmers in degraded areas often depends on labor availability, access to organic inputs, credit, markets and extension services. Short-term costs (e.g., composting, residue management, green manuring) can be a barrier, even though long-term benefits are substantial.

Supportive policies and programs can accelerate uptake, such as:

- Incentives for residue retention and on-farm composting instead of burning.
- Inclusion of organic and biofertilizers in subsidy and quality-control frameworks.
- Training through farmer field schools and participatory on-farm trials to demonstrate INM benefits.

Large-scale landscape restoration projects increasingly integrate INM, soil and water conservation, and sustainable land management, illustrating how nutrient management fits within broader resilience and restoration agendas.


Challenges and Future Directions

Despite strong evidence of benefits, several challenges remain:

- Limited availability of quality organic inputs in densely populated or livestock-poor regions.
- Competing uses of crop residues for fodder or fuel.
- Variable quality and inconsistent performance of commercial biofertilizers.
- Knowledge gaps among farmers and extension workers regarding balanced nutrition and site-specific management.

Future efforts should focus on:

- Developing location-specific INM modules for key cropping systems in degraded zones.
- Improving supply chains and quality control for organic amendments and biofertilizers.
- Integrating INM with regenerative agriculture approaches, conservation tillage and climate-smart practices to maximize synergies.
- Harnessing digital tools and farmer-to-farmer networks to spread successful models quickly.

Conclusion

Integrated Nutrient Management offers a robust, science-based pathway to restore soil fertility and enhance crop productivity in degraded agro-ecosystems. By combining organic inputs, judicious mineral fertilization, biofertilizers and diversified cropping systems, INM improves physical, chemical and biological soil properties while delivering higher and more

stable yields. In an era of climate change, resource scarcity and growing food demand, investing in INM is not simply an agronomic option but a necessity for long-term sustainability. Tailoring INM packages to local conditions, supported by strong extension, enabling policies and emerging precision technologies, can transform degraded landscapes into resilient, productive agro-ecosystems capable of supporting livelihoods and ecosystem services for future generations.

References

1. Abid, M. et al. (2020). Integrated nutrient management enhances soil quality and crop yield in intensive systems. *Sustainability*.
2. Agegnehu, G. et al. (2017). Integrated soil fertility and plant nutrient management in tropical agro-ecosystems. ICRISAT Working Paper.
3. Dey, P. (2018). Integrated nutrient management for improving soil health and crop productivity. SAARC Regional Training Programme Manual.
4. FAO. (n.d.). What is integrated plant nutrient management? Food and Agriculture Organization of the United Nations.
5. Kamboj, D. et al. (2024). Integrated nutrient management for improving soil sustainability and crop productivity: A review. *Journal of Advances in Biology & Biotechnology*, 27(11), 1053–1062.
6. Khambalkar, P. A. et al. (2025). Sustainable nutrient management balancing soil health and productivity. *Sustainable Agriculture*, in press.
7. NITI for States (2018). Policy brief on integrated nutrient management for soil quality improvement in India.
8. Sharawat, V. et al. (2025). Influence of integrated nutrient management on sustaining productivity and soil health. *Journal of Farming and Land Management*.
9. Integrated nutrient management in sustainable plant production: A review. *International Journal of Agriculture Sciences*, 6(2), 45–52.
10. Beerling, D. J. et al. (2023). Enhanced weathering in the U.S. Corn Belt delivers carbon removal with agronomic benefits. *Biogeosciences*.
11. World Bank. (2025). Agro-Climatic Resilience in Semi-Arid Landscapes (ACReSAL) Project overview.
12. UN & regional sources. (2024–2025). Rainwater harvesting and soil regeneration in the Sahel: Integrated approaches to water and nutrient management.