

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 11 (November, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Artificial Intelligence (AI) and Machine Learning (ML) in Smart Agriculture

*Surya Dang and Haobijam James Watt

Lovely Professional University, Jalandhar, Punjab, India

*Corresponding Author's email: surya.dang.2005@gmail.com

Artificial Intelligence (AI) and Machine Learning (ML) are changing the ways that food is grown, managed, and distributed, starting a new era in farming. AI-driven farming lets farmers keep an eye on their crops in real time, take better care of the soil, use water and pesticides more accurately, and make almost every part of farming better. This is possible because of the use of drones, sensors, satellites, and data analysis. Not only do these improvements boost productivity, but they also lessen the damage to the environment, protect natural resources, and make it easier to deal with the effects of climate change. With the help of farmers who have been doing it for hundreds of years, as well as artificial intelligence and machine learning, we might be able to start a Green Digital Revolution that will change agriculture as we know it.

Introduction

Agriculture, which used to be based on gut feelings and tradition, is now becoming a data-driven science that is more focused on quality and output in order to meet the needs of the present and the future. This is being done to satisfy their needs. It is expected that the world's demand for food will rise by almost 70% by 2050 (FAO, 2024), which makes sustainable farming practices more important than ever. Traditional farming methods, which rely heavily on the weather and the laws of nature, can't keep up with the growing needs of today. These practices also don't help with either productivity or sustainability. As the gap between food supply and demand keeps getting bigger, we need smarter, data-driven solutions that can make things more efficient while also saving the natural resources that are already in short supply. Artificial Intelligence (AI) and Machine Learning (ML) are transformative tools that could change agriculture as we know it at this point.

Artificial intelligence (AI) and machine learning (ML) make what is known as Precision Agriculture (PA) possible. This is because AI and ML can look at huge amounts of data, find patterns, and make predictions. This method uses new technologies like satellites, drones, and sensors to come up with solutions that are specific to the needs of farms. Farmers can keep an eye on the soil from afar, look for signs of crop stress, predict how the weather will affect crops, and make the most of every part of farming by doing this. Artificial intelligence might not only be helpful in some fields, but it might also be the key to making India's manufacturing sector more productive and environmentally friendly. This is especially true in countries that are growing quickly, like India, where more than half of the people depend on farming.

Understanding AI and ML in Agriculture

Artificial Intelligence (AI) and Machine Learning (ML) are the most important parts of modern digital agriculture. Artificial intelligence (AI) is the ability of machines and computer systems to act like people and do things like learn, think, and solve problems, all while being much faster than people. It lets information processing systems handle huge amounts of data that have been collected from a number of places, such as weather stations, soil sensors, and

monitors. Farmers can now make decisions that are correct and based on evidence about what they should do next, which leads to more output. Before, they had to guess.

ML, or machine learning, is a big part of AI. Machine learning algorithms don't have clear instructions; instead, they learn from data by finding patterns that happen again and again and figuring out how they are related. As more data is added to these models, they automatically get better at making predictions. This happens on its own. Because of this, machine learning can be used to predict things like weather patterns, pest infestations, and other things that help farmers grow more food.

Precision agriculture (PA) uses artificial intelligence (AI) and machine learning (ML) to find very specific problems in a field and come up with accurate solutions that address the root cause. This is done while keeping the amount of output needed to a minimum, which in turn raises farmers' profits, which they can use to make their production even better. All of these parts can work together to make a complicated but effective network of systems that can quadruple productivity, no matter what problems arise.

Crop and Disease Monitoring

The Food and Agriculture Organisation of the United Nations (2024) says that crop diseases and pest infestations are responsible for up to thirty percent of all agricultural losses around the world. Two traditional ways to find diseases are by doing manual scouting and testing in a lab. These methods take a lot of time and are often wrong. Artificial intelligence gets around these problems by using algorithms that look at crop photos taken by drones or smartphones. Predictive models and real-time data get around these problems. Machine learning models, especially convolutional neural networks (CNNs), have shown an amazing level of accuracy in finding and classifying plant diseases. For instance, researchers at the Indian Institute of Technology in Allahabad (2024) created a CNN model that can find leaf diseases in maize and potatoes with an accuracy rate of 97.25%. This model makes it possible to quickly find problems and fix them. Plantix and Plant Village Nuru are two examples of mobile apps that help farmers by giving them quick diagnoses. All you have to do is upload a picture of the leaves that are sick. These tools not only cut down on the use of pesticides, but they also stop diseases from spreading to a large group of people.

Water Management

Water scarcity is one of the most critical threats to agriculture, particularly in arid and semi-arid regions such as Rajasthan. AI powered irrigation systems integrate sensors and data to determine when and how much water to supply. Through real time analysis of soil moisture, evaporation rate and weather forecasts, AI can automate irrigation as a whole. Studies conducted by the Indian Agricultural Research Institute (IARI, 2024) have shown that ML based drip irrigation systems can reduce water consumption by 40% while improving yield by almost 20% as compared to conventional methods. Satellite based models developed under NASA's OpenET Project allow estimation of field level evaporation and transpiration rates, helping farmers manage irrigation networks more easily and thus reducing the strain on groundwater and dependence on monsoons.

Soil Management

Healthy soil is the foundation of sustainable farming, yet nutrient depletion and over fertilization remain persistent problems in today's world. AI driven soil analysis combines spectral imaging, sensors and data along with ML algorithms to assess nutrient content, pH and organic matter levels in all horizons of soil. Systems such as ICAR's SmartFarm AI Platform (2024) uses predictive modeling to recommend optimal fertilizer amount. This reduces Nitrogen leaching as well as improves soil fertility over time. According to International Fertilizer Association (2023), AI guided fertilizer recommendations can reduce input use by almost 30% while increasing yields.

Pest Control

Pest control and weed management traditionally rely on chemical spraying across entire fields, leading to high costs and environmental risks. AI has introduced selective and sustainable control methods like how AI based drones can distinguish between crop foliage and invasive weeds using multispectral imaging. Systems like Ecorobotix (Switzerland) and Blue River Technology (USA) utilize ML algorithms to target only weed infested patches, thus reducing herbicide use by almost up to 90%. In India, AI integrated drones combined with pheromone traps are now being used to predict pest infestations such as Armyworms in Maize and Bollworms in cotton, giving farmers a chance to react before serious damage.

Crop Forecasting

Predicting crop yields successfully has significant economic implications for farmers, policy makers and the overall food industry. Machine Learning models process complex datasets including but not limited to soil health, past yield records, rainfall patterns and temperature fluctuations to forecast yield outcomes. The USDA's AI Crop Yield Forecasting System (2023) improved prediction accuracy by 18% compared to conventional statistical models. India's Paddy Yield Estimation Model (ICAR 2024) used deep learning algorithms and satellite imagery to predict yields almost 25 days before harvest. These systems enable better resource planning, post-harvest management, market forecasting on a global scale which improves food security.

Automated Harvesting

Automation driven by AI is addressing labor shortages and precision challenges in modern agriculture. Autonomous tractors, robotic harvesters and seeding machines are increasingly being deployed for field operations. John Deere's AI Tractors use GPS and deep learning to navigate complex field terrains automatically, maintaining the required path with centimeter level accuracy. Naio Technologies (France) has introduced AI enabled weeding robots that can identify crops and remove weeds without damaging plants. In greenhouses, robotic arms powered by AI are being used for harvesting delicate crops like Strawberries and Tomatoes, where human labor often struggles with consistency and speed. These technologies not only improve efficiency but also reduce operational costs and dependence on manual labor.

Impact Summary

The impact of Artificial Intelligence (AI) and Machine Learning (ML) can be seen below in the given points

- Disease detection with 97% accuracy and control
- Water conservation of 40% and more meaningful climate resilience
- Yield prediction with 20% higher accuracy and improved planning
- Fertilizer reduction by 30% and better soil conservation
- Labor reduction by 25% and increased efficiency and scalability

Conclusion

Artificial Intelligence (AI) and Machine Learning are redefining what it means to farm in this century. These technologies are helping farmers replace uncertainty with precision and assurance in all sectors of agriculture like predicting yields before harvest, detecting diseases before they spread and using every drop of water and gram of fertilizer efficiently. The union of traditional farming wisdom with the help and cooperation of farmers and modern intelligence signals the rise of a Digital Green Revolution just waiting to happen. A revolution where data nurtures crops, knowledge empowers farmers and sustainability becomes the harvest of progress. Agriculture's future will not be written by machines alone, but by the hands of the informed farmers using technology to cultivate a self-sufficient and food secure world.

References

1. Botero-Valencia J. & Sanchez D. (2025). Machine Learning in Sustainable Agriculture: Opportunities and Challenges. *Sustainability*, 17(5), 2124.
2. John Deree & Company. (2023). Autonomous Tractor Operations Using Machine Learning Vision Systems. Moline, Illinois, USA.
3. Mohanty S. P., Hughes, D.P., & Salathe M. (2016). Using Deep Learning for Image Based Plant Disease Detection. *Frontiers in Plant Science*, 7(1419).
4. Polwattha, K. P. G. D. M., Amarasinghe, S. T. C., Amarasinghe, A. A. Y. D. & Amarasinghe, A. A. Y. (2024). Exploring Artificial Intelligence and Machine Learning in Precision Agriculture: A Pathway to Improved Efficiency and Economic Outcomes in Crop Production, 8(3), 50-59.
5. Upadhyay A. & Verma P. (2025). Deep Learning and Computer Vision in Plant Disease Detection. *Springer Nature*, Singapore.