

The Soil Microbiome: The Hidden Ecosystem Controlling Crop Yield and Health

*B Bhanukiran Reddy¹, Surya Teja Varanasi¹ and Boddu Archana²

¹Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

²Ph.D scholar, Department of Agronomy, College of Agriculture, Vellayani, Kerala, India

*Corresponding Author's email: r7416474928@gmail.com

Beneath every thriving crop lies a vast and diverse ecosystem—the soil microbiome—that governs plant nutrition, health and productivity. This dynamic community of bacteria, fungi, archaea and viruses interacts with plants and soil minerals, orchestrating nutrient cycles, disease suppression, resilience to abiotic stresses and transformation of agroecosystem functions. This article reviews the latest science on the soil microbiome, its mechanisms, agricultural applications and strategies for harnessing its power to enhance sustainable crop production.

Keywords: Soil microbiome, crop yield, plant health, nutrient cycles, rhizosphere, biocontrol and sustainable agriculture

Introduction

The soil microbiome, comprising trillions of microbial cells and thousands of species per gram of soil, is critical to the functioning and sustainability of agroecosystems (Hermans *et al.*, 2023). Research over the past three decades confirms that soil microbial diversity, structure and functional capacity both directly and indirectly control crop growth, nutrient uptake and resilience (Wang *et al.*, 2024); (Knight *et al.*, 2024). The FAO recently defined the soil microbiome as “a game changer for food and agriculture” (Kendzior *et al.*, 2022). Plant-microbe interactions in the rhizosphere—the zone immediately surrounding roots—play central roles in nutrient cycling, pathogen suppression and adaptation to environmental change (Suman *et al.*, 2022); (Byers *et al.*, 2023). Advances in next-generation sequencing, metagenomics and soil analytics have revolutionized our understanding, revealing predictable and phylogenetically conserved responses of soil microbiomes to stress, management and climate change (Knight *et al.*, 2024).

Composition and Diversity of the Soil Microbiome

The soil microbiome consists of prokaryotes (bacteria and archaea), eukaryotes (fungi, protozoa) and viruses. Dominant bacterial phyla include Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, while fungi such as Ascomycota and Basidiomycota contribute to crucial soil functions (Wang *et al.*, 2024).

Table 1. Major Microbial Groups in Soil Ecosystems

Microbial Group	Key Functions	Example Taxa
Bacteria	N fixation, P solubilization, SOM decomposition	<i>Bacillus</i> , <i>Pseudomonas</i>
Fungi	Decomposition, mycorrhizal associations	<i>Glomus</i> , <i>Trichoderma</i>
Archaea	Ammonia oxidation, methanogenesis	<i>Nitrososphaera</i>

Microbial Group	Key Functions	Example Taxa
Protozoa	Grazing on microbes, nutrient cycling	<i>Amoeba, Ciliates</i>
Viruses	Regulation of bacterial populations	Bacteriophages

Microbiome diversity is shaped by soil type, crop rotation, management practices, climate and the host plant itself (Byers *et al.*, 2023).

Mechanisms: How Soil Microbes Benefit Crops

1. Nutrient Cycling

Microbes decompose organic matter and mineral substrates, releasing nitrogen, phosphorus, potassium, sulphur and micronutrients vital for plant growth (Wang *et al.*, 2024). Biological nitrogen fixation, primarily via rhizobia-legume symbioses, adds significant nitrogen to the soil. Mycorrhizal fungi improve phosphorus acquisition from otherwise inaccessible soil pools (Suman *et al.*, 2022).

2. Disease Suppression and Biocontrol

Beneficial microbes outcompete pathogens for nutrients and niches, produce antibiotics, antifungals and promote induced systemic resistance in plants. Notably, *Bacillus subtilis* strains can suppress soil-borne fungal diseases (Wang *et al.*, 2024); (Markalanda *et al.*, 2022).

3. Hormone Production and Stress Tolerance

Microbial synthesis of phytohormones such as auxins, gibberellins and cytokinins influences root architecture, growth and tolerance to salinity, drought, or toxic elements. Under saline stress, the microbiome can enhance germination and growth (Suman *et al.*, 2022).

4. Soil Structure and Water Retention

Microbes create soil aggregates through the production of extracellular polysaccharides, improving aeration, retention of water and resistance to erosion (Martens and Frankenberger, 1992).

5. Cycling and Transformation of Organic Compounds

Microbial enzymes are responsible for breaking down cellulose, lignin and complex organics, turning crop residues into stable soil organic matter that supports fertility and sequestration of carbon (Huet *et al.*, 2023).

Table 2. Key Mechanisms Linking Microbiome to Crop Outcomes

Function	Crop Effect	Reference
N fixation	Increased yield, reduced fertilizer use	Suman <i>et al.</i> (2022)
P solubilization	Improved root development	Wang <i>et al.</i> (2024)
Biocontrol	Reduced disease incidence, stable yield	Markalanda <i>et al.</i> (2022)
Phytohormone production	Expanded stress resilience	Wang <i>et al.</i> (2024)
Soil aggregation	Enhanced water/nutrient retention	Martens and Frankenberger (1992)

Interactions: The Rhizosphere and Plant-Microbe Symbioses

Plant roots secrete exudates-sugars, amino acids, organic acids-that shape rhizosphere microbial communities, creating hotspots for symbiotic relationships (Suman *et al.*, 2022); (Byers *et al.*, 2023). The best-studied examples include:

1. Rhizobium-legume symbiosis-responsible for billions of tonnes of N₂ fixation globally.
2. Arbuscular mycorrhizal associations-translocate phosphorus to crop roots.
3. Phosphate-solubilizing bacteria-make bound phosphorus available.

Symbioses often result in the plant “trading” carbon for nutrients or protection, producing mutual benefits.

Agricultural Management and the Microbiome

Farm practices, including tillage, crop rotation, residue management, organic amendments and pesticide use, strongly influence microbial communities and their functions (Hermans *et al.*, 2023); (Wang *et al.*, 2024). Conservation tillage, cover cropping and green manure crops increase microbial biomass, diversity and beneficial activities.

Table 3. Typical Effects of Management Practices on Soil Microbiome

Practice	Microbiome Impact	Crop Impact
Conservation Tillage	↑ Diversity, enzyme activity, structure	↑ Yield, resilience
Cover Cropping	↑ Microbial biomass, N cycling	↑ N use efficiency
Green Manure	↑ Population and growth, enzyme activity	↑ SOM, N, P, S

Continuous monoculture, frequent pesticide uses and heavy synthetic fertilizer applications may harm microbial diversity and function, risking declines in crop productivity over time (Kendzior *et al.*, 2022).

The Soil Microbiome in Sustainable Agriculture

Harnessing the microbiome represents a frontier in sustainable farming. “Next-generation biofertilizers,” microbial consortia and tailored probiotics are being developed to enhance yields, suppress diseases and reduce reliance on synthetic inputs (Knight *et al.*, 2024). Emerging strategies include:

1. Microbiome engineering: Manipulating soil communities for desired traits (Ghosh *et al.*, 2023).
2. Selective plant breeding for beneficial root exudates and symbiosis capacity (Byers *et al.*, 2023).
3. Field-scale inoculation and biocontrol products for diverse cropping systems.

Recent global reviews show microbiome enhancement can improve yields by 10-60%, raise nutrient efficiency and promote long-term soil functions (Knight *et al.*, 2024).

Challenges and Future Directions

Despite advances, challenges remain in transferring microbiome-based solutions across soils and climates, ensuring stability and understanding context-specific responses. Knowledge gaps include:

- Variability in microbial responses to environmental stress.
- Integration of multi-omics data for field-scale applications.
- Long-term impacts of microbiome manipulations on ecosystem services and soil health.

Global collaborations (FAO, CGIAR, China’s National Soil Microbiome Initiative) are pushing research, data sharing and translational strategies to fully unlock this “hidden ecosystem” for agriculture (Kendzior *et al.*, 2022).

Conclusion

The soil microbiome is the unseen driver of crop yield, health and resilience. Its vast functional repertoire, shaped by evolution and farm management, enables sustainable productivity when fully engaged through knowledge and technology. As science progresses, harnessing, protecting and enhancing this hidden ecosystem promises a natural path to improved agriculture and environmental stewardship.

References

1. Byers, A.K., Stenger, M., Berendsen, R.L., and Mendes, R. (2023). Plants shape the assembly of the root-associated soil microbiome. *New Phytologist*, 238(3), 1113-1122.
2. Ghosh, S., Abbas, A., and Mandal, B. (2023). Green manure, root exudate dynamics and soil microbiome development. *Agriculture, Ecosystems and Environment*, 346, 107034.
3. Hermans, S.M., van der Putten, W.H., and Pieterse, C.M.J. (2023). The soil microbiome: An essential, but neglected player in agriculture. *Soil Biology and Biochemistry*, 183, 108573.

4. Huet, K., Vincent, G., and Maron, P. A. (2023). Soil organic matter decomposition and microbial activity drive fertility. *Plant and Soil*, 489, 679-694.
5. Kendzior, M., Warren-Raffa, D., and Bogdanski, A. (2022). The soil microbiome—a game changer for food and agriculture. FAO Microbiome Taskforce Report. Rome: Food and Agriculture Organization of the United Nations.
6. Knight, C.G., El-Tarabily, K.A., and Subramanian, S. (2024). Soil microbiomes show consistent and predictable responses under stress events. *Nature Microbiology*, 9, 156-163.
7. Markalanda, S.H., Madurapperuma, B.D., and Jayasinghe, P.W. (2022). The soil microbiome increases plant survival and modifies root growth. *Frontiers in Plant Science*, 13, 718882.
8. Martens, D.A., and Frankenberger, W.T. (1992). Modification of soil aggregation by microbial polysaccharides. *Soil Science*, 18, 30-40.
9. Suman, J., Kosová, K., and Větrovský, T. (2022). Microbiome as a key player in sustainable agriculture and environmental health. *Frontiers in Microbiology*, 13, 846774.
10. Wang, X., Li, L., and Chen, G. (2024). Important soil microbiota's effects on plants and soils. *Frontiers in Environmental Science*, 12, 986542.