

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 11 (November, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Precision Agriculture and Smart Farming: Transforming Modern Agriculture with Technology

*Anish Kumar and Haobijam James Watt

School of Agriculture, Lovely Professional University, Phagwara, Punjab, India

*Corresponding Author's email: osmanish2425@gmail.com

Smart farming and precision agriculture (PA) are two new ways to farm that use cutting-edge technologies like the internet of things (IoT), artificial intelligence (AI), sensors, and data analytics to make farming more productive and less harmful to the environment. Smart farming uses these technologies along with automation and real-time monitoring to fully manage a farm. PA, on the other hand, uses site-specific management to get the most out of inputs. This article looks at the latest developments in smart farming and precision agriculture. It also talks about the main technologies, benefits, and problems that come with these fields, as well as the possibility of future growth. Recent research studies and case studies are employed to achieve this objective.

Introduction

Agriculture is facing problems it has never faced before because the world's population is growing, climate change is happening, and resources are running out. To meet the growing need for food while also reducing the harm to the environment, new technologies like smart farming and precision agriculture have been created. The goal of precision agriculture is to use technology to deal with the differences in space and time that happen in fields. Smart farming builds on this idea by using the Internet of Things (IoT), artificial intelligence (AI), and automation to make farming systems that are connected and based on data. Maurya et al. (2024) and Mansoor et al. (2025) say that combining these two approaches could make agriculture more efficient, sustainable, and profitable.

Precision Agriculture: Concepts and Technologies

Precision agriculture is different from other farming methods because it uses GPS, GIS, remote sensing, soil and crop sensors, and variable rate technology (VRT) to manage crops on a site-specific basis. It lets farmers see, measure, and respond to changes in soil fertility, crop health, and moisture levels that happen in the same field. This focused management increases crop yields while also cutting down on the amount of waste and harm done to the environment (Saha et al., 2025; Krishnababu et al., 2024). C. Sangeetha et al. (2024) say that technologies like drones and satellite images are very important for monitoring crops and predicting yields.

Smart Farming: Integration and Automation

Smart farming builds on PA by using IoT devices, AI-driven analytics, robotics, and cloud computing to make farm operations fully automated and connected. Sensors in the Internet of Things send real-time data to artificial intelligence platforms. These sensors keep an eye on the soil's moisture, temperature, and stress levels in the crops. This information is then used to improve pest control, fertilisation, and irrigation (Pandey et al., 2024; Nimmagadda, 2018). Padhiary (2024) says that automated machines and drones make it less necessary to rely on people and make things much more accurate. Smart farming lets farmers use their resources

in a way that is good for the environment and manage them in a way that is proactive. This helps farms make more money.

Environmental and Economic Benefits

Using chemical fertiliser and water can be reduced by as much as 30–40% through the use of precision and smart farming, according to research (Padhiary, 2024). This results in a reduction in both costs and environmental pollution. The resilience of crops is improved through improved disease monitoring and improved yield prediction, which in turn supports food security. According to Bahmutsky (2024), life cycle analyses have demonstrated that these technologies bring about a reduction in the carbon footprint of agriculture while also reducing the costs associated with their implementation.

Challenges and Future Outlook

The high initial cost, the need for technical knowledge, worries about data privacy, and problems with getting online in rural areas are all reasons why people don't want to use it. To get past these problems, we need help from the government, better education for farmers, and new technologies. According to Maurya et al. (2024) and Mansoor et al. (2025), the future is heading towards Agriculture 4.0 and 5.0 paradigms. These paradigms focus on using AI, blockchain technology, edge computing, and big data to make things even more precise and sustainable. To reach global food security and climate goals, we need to keep coming up with new ideas.

Conclusion

Precision agriculture and smart farming are the future of sustainable farming. They want to change how farms are run by using data-driven insights and automation. These technologies make farming more productive, less harmful to the environment, and more profitable. They do this by using inputs in the right amounts and automating processes. To get a lot of people to use it, it will be necessary to put money into education, infrastructure, and policies that are relevant. Ultimately, these innovations are crucial for feeding the growing population while safeguarding natural resources.

References

1. Maurya, D.K., Kumar, S., & Singh, K. (2024). A Review on Precision Agriculture: An Evolution and Prospect for the Future. *International Journal of Plant & Soil Science*.
2. Saha, S., Kumar, P., & Prasad, R. (2025). Precision Agriculture for Improving Crop Yield Predictions. *Frontiers in Agronomy*.
3. Krishnababu, M.E., Raju, T.S., & Kumar, B. (2024). Navigating the Future of Farming with AI and IoT. *Asian Journal of Soil Science & Plant Nutrition*.
4. Sangeetha, C., Natarajan, S., & Rajesh, K. (2024). Remote Sensing and GIS for Precision Agriculture. *International Journal of Environment and Climate Change*.
5. Pandey, P., Sharma, A., & Gupta, V. (2024). IoT-Based Smart Farming Technologies: A Case Study on Banana Crop Yield Optimization. *Asian Journal of Research in Computer Science*.
6. Nimmagadda, Y. (2025). Integrating IoT and AI for Precision Farming. *SSRN Papers*.
7. Padhiary, R. (2024). Enhancing Precision Agriculture: Machine Learning and AI Applications. *ScienceDirect*.
8. Mansoor, S., Iqbal, S., Popescu, S.M., & Chung, Y.S. (2025). Integration of Smart Sensors and IoT in Precision Agriculture: Trends, Challenges and Future Prospects. *Frontiers in Plant Science*.
9. Bahmutsky, S. (2024). A Review of Life Cycle Impacts and Costs of Precision Agriculture. *ScienceDirect*.