

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 11 (November, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Nature's Hidden Superfoods: Underutilized Leafy Vegetables

*Kadiyala Prathima¹, Shashank P² and Vusolla Anisha Preethi³

¹Division of Vegetable Crops, ICAR-IIHR, Bengaluru, Karnataka, India

²M.Sc. Scholar, Department of Vegetable Science, Dr. YSRHU-College of Horticulture, Anantharajupeta, Andhra Pradesh, India

³M.Sc. Scholar, Department of Food and Nutrition, College of Community Science, PJTAU, Hyderabad, Telangana, India

*Corresponding Author's email: prathimakadiyala07@gmail.com

A significant component of the human diet are leafy greens. Green leafy vegetables hold a significant position since they are rich and readily available sources of minerals and vitamins. They are abundant in minerals like calcium, iron and phosphorus as well as carotene, ascorbic acid, riboflavin, and folic acid. According to the ICMR, a person should consume 300 g of vegetables on average per day, which includes 75 g of other vegetables, 100 g of roots and tubers, and 125 g of leafy greens. Consuming green vegetables on a regular basis reduces the risk of cancer and heart disease, avoids fatigue, aids in maintaining good health, and delays senescence. Unfortunately, there is still insufficient consumption of green vegetables. Underutilized leafy vegetables (ULVs) are nutrient-dense, resilient, and culturally important plants traditionally consumed in rural and indigenous communities. Rich in vitamins, minerals, fiber, and bioactive compounds, they support health, prevent malnutrition, and offer medicinal benefits. ULVs are climate-resilient, able to grow in poor soils, and can enhance food security year-round. Despite their potential, limited awareness, weak markets, and policy neglect have kept them marginalized, highlighting the need to promote their cultivation, consumption, and commercialization.

Underutilized Leafy Vegetables (ULVs)

According to Jaenick and Hoschle (2006), underutilized crops and plant species are defined as "those species with underexploited potential for contributing to food security, health (nutritional/medical), income generation, and environmental services". Green leafy vegetables are essential food crops that are high in minerals (calcium, iron, phosphorus) and vitamins (carotene, vitamin C, riboflavin, folic acid). ULVs are a diverse group of edible plants that have historically been a part of traditional diets, especially in rural and indigenous communities. Despite their high nutritional value and resilience to adverse conditions, these vegetables remain largely neglected in mainstream agriculture, policy, research, and food systems. Numerous underutilized greens are highly nutritious, resilient to harsh weather, and may grow in poorly managed soils, but are still underutilized because of poor awareness. These crops have gained popularity recently in an effort to increase food availability, reduce poverty and malnutrition.

Significance of Underutilized Leafy Vegetables (ULVs)

1. Nutritional Powerhouses

Many ULVs are rich sources of:

- Vitamins (A, C, E, K, folate)
- Minerals (iron, calcium, magnesium, zinc)
- Dietary fiber
- Phytochemicals and antioxidants

Their nutrient density makes them effective in combating micronutrient deficiencies, especially in regions where malnutrition is prevalent.

2. Agricultural Resilience and Adaptability

Underutilized leafy vegetables are often:

- Drought-tolerant
- Pest and disease resistant
- Able to grow in poor or marginal soils
- Suitable for short cropping cycles

This makes them ideal for climate-smart agriculture, especially in resource-limited rural settings where input costs are high and environmental stresses are increasing.

3. Supporting Food Security

They can be grown year-round, including during lean seasons, helping households:

- Maintain dietary diversity
- Reduce dependence on a few staple crops
- Ensure a continuous supply of fresh, nutritious food

They also provide food sovereignty, empowering local communities to use traditional knowledge and resources to feed themselves.

4. Economic Opportunities

Despite being overlooked in commercial agriculture, ULVs have great market potential. They can:

- Be sold in local markets or urban informal sectors
- Offer value-added products like dried leaves, powders, and sauces
- Create employment in small-scale farming, processing, and marketing

Promoting these vegetables can boost rural incomes and strengthen local agri-food economies.

5. Cultural and Biodiversity Significance

ULVs are part of the cultural heritage of many communities. Promoting them helps preserve:

- Indigenous knowledge systems
- Traditional farming practices
- Agrobiodiversity, which is crucial for ecosystem health and resilience

Protecting and promoting these vegetables contributes to sustainable food systems rooted in local biodiversity.

Challenges and Limitations in Promoting Underutilized Leafy Greens

Despite their clear benefits for nutrition, agriculture, and rural development, ULVs remain on the periphery of mainstream food systems. Several interconnected challenges hinder their production, consumption, and commercialization:

1. Limited Awareness and Negative Perceptions

- Low consumer awareness of the nutritional value and health benefits.
- They are sometimes seen as “food for the poor” or weed.

2. Lack of Research and Scientific Documentation

Many ULVs are not well-studied in terms of their:

- Agronomic characteristics (yields, inputs, resistance)
- Nutritional profiles
- Post-harvest handling needs

There is a lack of standardized cultivation practices, certified seeds, or improved varieties, making their production less predictable for farmers.

3. Weak Market Linkages and Commercialization

- Limited access to structured markets
- Lack of processing and value addition facilities
- Poor shelf life and perishability

4. Policy and Institutional Neglect

- Most agricultural and nutrition policies focus on major staple crops and overlook traditional or indigenous vegetables.
- ULVs are not included in national dietary guidelines, government procurement schemes, or agricultural extension services.
- There is also little private sector investment in underutilized crops.

5. Post-Harvest Losses and Processing Constraints

- Due to their high perishability, many ULVs spoil quickly after harvest, especially in warm climates without proper storage.
- There is often no processing technology available to extend shelf life (e.g., drying, fermentation, or canning).
- This leads to food loss and discourages farmers from producing large quantities.

6. Loss of Indigenous Knowledge and Biodiversity

- As food systems become more globalized and industrialized, traditional food crops and the knowledge systems surrounding them are rapidly disappearing.
- Younger generations are less familiar with how to identify, cook, or cultivate ULVs.
- Environmental degradation and land-use change threaten wild populations of some underutilized greens.

Nutritional and Health Benefits of Underutilized Leafy Vegetables

- Out of nearly 70 *Amaranthus* species worldwide, only about 17 are edible leafy vegetables, with *A. dubius* and *A. viridis* being the most widely used (Sarker & Oba, 2019).
- Spinach is also popular for its rich antioxidant content that helps prevent oxidation-related diseases (Ko et al., 2014).
- *Ipomoea aquatica* grows in aquatic habitats and is valued for its amino acids and medicinal benefits for jaundice and nervous debility (Nagendra Prasad et al., 2008).
- The bright leaves of *Marsilea minuta* are consumed as a vegetable and traditionally used to treat respiratory ailments (Arokiyaraj et al., 2018).
- *Moringa oleifera*, known as the “miracle tree,” provides nutrient-dense leaves rich in vitamins and polyphenols, and is widely used in food, medicine, cosmetics, and livestock feed (Sharma et al., 2009).
- Tender leaves of *Lagenaria siceraria* are commonly eaten in summer (Sharma et al., 2013), while *Colocasia esculenta* leaves improve digestive health due to their high dietary fibre (Radek & Savage, 2008).
- Leaves of *Trigonella foenum-graecum* aid in stomach and mucosal health (Singh et al., 2020), while *Bacopa monnieri* is known for diverse medicinal uses (Alam et al., 2012).
- *Trichosanthes dioica* supports blood glucose regulation (Rai et al., 2008), and *Raphanus sativus* leaves contain anthocyanins and isothiocyanates contributing to health benefits and distinctive flavour (Manivannan et al., 2019).
- *Brassica juncea* leaves have compounds effective against diabetes and anxiety disorders (Subudhi & Bhoi, 2014).
- *Basella alba* (Indian spinach/Malabar spinach) is a summer leafy vegetable with mucilaginous leaves that aid digestion. It is rich in fibre, folate, vitamin B₆, riboflavin, and iron, supporting anemia prevention and bone health.
- *Chenopodium album* (Bathua) is valued in Ayurveda and contains proteins, essential vitamins, minerals, dietary fibre, and demonstrates hypoglycemic, anti-inflammatory, hepatoprotective, and anticancer properties (Sikarwar et al., 2013).
- *Sauvagesia androgynus* (Chekurmanis) is highly nutritious with β-carotene, vitamins C and E, calcium, iron, zinc, and strong antioxidant potential.
- *Lepidium sativum* (Garden cress) contains volatile oils and multiple bioactive compounds, offering hepatoprotective, antihypertensive, diuretic, antimicrobial, anti-inflammatory, antioxidant, laxative, and chemoprotective effects.

Conclusion

Food security is currently one of the world's most pressing challenges. Over time, our global food systems have become increasingly unnatural and vulnerable due to a heavy reliance on just a few major staple crops. This narrow focus has led to a range of biological, economic, ecological, and agronomic consequences from reduced dietary diversity and malnutrition to declining crop resilience and environmental degradation. Underutilized Leafy Vegetables offer a sustainable and strategic solution to these challenges. Rich in micronutrients, adaptable to harsh environments, and deeply rooted in traditional farming systems, these crops can play a vital role in enhancing nutrition, improving food security, and strengthening agricultural resilience. By integrating them into mainstream agriculture, diets, and policies, we can diversify our food systems, support rural livelihoods, and reduce our dependence on a limited set of crops. To fully realize their potential, greater awareness, research, policy support, and market development are essential. Reviving and promoting these "forgotten greens" is not just a step toward better health, it's a pathway to building more resilient, equitable, and sustainable food systems for the future.

References

1. Alam, M. N., T. B. Wahed, F. Sultana, J. Ahmed, and M. Hasan. (2012). In vitro antioxidant potential of the methanolic extract of *Bacopa monnieri* L. Turkish Journal of Pharmaceutical Sciences, 9 (3):114.
2. Jaenicke and Hoschle-Zeledon. (2006). Strategic Framework for Underutilized Plant Species Research and Development, with Special Reference to Asia and the Pacific, and to Sub-Saharan Africa. Bioversity International.
3. Ko, S.-H., J.-H. Park, S.-Y. Kim, S. W. Lee, S.-S. Chun, and E. Park. (2014). Antioxidant effects of spinach (*Spinacia oleracea* L.) supplementation in hyperlipidemic rats. Preventive Nutrition and Food Science, 19 (1):19–26.
4. Manivannan, A., J.-H. Kim, D.-S. Kim, E.-S. Lee, and H.-E. Lee. (2019). Deciphering the nutraceutical potential of *Raphanus sativus*- A comprehensive overview. Nutrients, 11 (2):402.
5. Nagendra Prasad, K., G. R. Shivamurth, and S. M. Aradhya. (2008). *Ipomoea aquatica*, an underutilized green leafy vegetable: A review. International Journal of Botany, 4 (1):123–9.
6. Radek, M. and G. P. Savage. (2008). Oxalates in some Indian green leafy vegetables. International Journal of Food Sciences and Nutrition, 59 (3):246–60.
7. Rai, P. K., D. Jaiswal, R. K. Singh, R. K. Gupta, and G. Watal. (2008). Glycemic properties of *Trichosanthes dioica* leaves. Pharmaceutical Biology, 46 (12):894-9.
8. Sarker, U. and S. Oba. (2019). Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of *Amaranthus spinosus* and *Amaranthus viridis* weedy species. Scientific Reports, 9 (1):20413.
9. Sharma, N. K., P. Yadav, H. K. Singh, A. K. Shrivastava, and S. Gyan. (2013). In vitro antioxidant activity of *Lagenaria siceraria* leaves. Malaysian Journal of Pharmaceutical Sciences, 11 (1):1–11.
10. Sharma, R. K., S. Chatterji, D. K. Rai, S. Mehta, P. K. Rai, R. K. Singh, G. Watal, and B. Sharma. (2009). Antioxidant activities and phenolic contents of the aqueous extracts of some Indian medicinal plants. Journal of Medicinal Plants Research, 3 (11):944-948.
11. Sikarwar, I., Wanjari, M., Baghel, S.S. and Vashishtha, P. (2013). A review on phytopharmacological studies on *Chenopodium album* Linn. Indo American Journal of Pharmaceutical Research, 3: 3089-3098.
12. Singh, P., V. Bajpai, V. Gond, A. Kumar, N. Tadigoppula, and B. Kumar. (2020). Determination of Bioactive Compounds of Fenugreek (*Trigonella foenum-graecum*) Seeds Using LC-MS Techniques. Methods in Molecular Biology (Clifton, N.J.), 2020:377–93.
13. Subudhi, B. B. and A. Bhoi. (2014). Antioxidative effects of *Brassica juncea* and *Moringa oleifera* prepared by different processing methods. Journal of Food Science and Technology, 51 (4):790–4.