

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 11 (November, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Breeding the Next Generation of Climate-Resilient Fruit Varieties

*Naval Kishore Meena¹, Priyanka Hugar², Vicky Yadav³, Dr. Vijay R. Zala⁴ and Arunesh Kumar Verma⁵

¹Ph.D. Scholar, Department of Horticulture (Fruit Science), Rajasthan College of Agriculture, MPUAT, Udaipur-313001, Rajasthan, India

²Ph.D. Scholar, Department of Fruit Science, College of Horticulture, Bengaluru (University of Horticultural Sciences Bagalkot), Karnataka, India

³M.Sc. Scholar (Agriculture), Department of Horticulture (Fruit Science), College of Agriculture, Sanskaram University, Kheri Taluka, Patauda, Jhajjar, Haryana, India

⁴Assistant Professor, Department of Horticulture, College of Agriculture, Parul University, Vadodara, Gujarat, India

⁵Ph.D. Scholar, Department of Horticulture, SAST, Babasaheb Bhimrao Ambedkar University Lucknow, Uttar Pradesh, India

*Corresponding Author's email: navalkishor022018@gmail.com

Rising temperatures, unpredictable rainfall patterns, drought, soil salinity, and new pests and diseases are transforming even the classic fruit-growing areas of the world. To maintain profitability and nutritional security, climate-resilient fruit breeding aims at developing genotypes that are capable of thriving in multiple, and often unpredictable, environments. This “next-generation” breeding strategy combines traditional crossing with sophisticated genomic, molecular and physiological tools to improve both abiotic (heat, drought, salinity, cold) and biotic (pest, disease) resistance. This results in these plants being able to thrive in a much wider range of environmental conditions, including higher stress level environments. Rootstock–scion combinations, participatory breeding, and the application of digital and climate-smart technologies are the other aspects enhancing adaptability. Institutions and public–private partnerships are critical for getting climate-fit varieties into the hands of farmers. In the end, producing climate-resilient fruit crops contributes to higher, more stable yields, and quality fruit along with sustainable orchard ecosystems with enhanced opportunity to secure livelihoods and food systems in a warming world.

Keywords: Climate-resilient breeding, fruit crops, abiotic stress tolerance, genomic tools, rootstock–scion interaction, participatory breeding, sustainable horticulture

Introduction: The Urgency of Climate-Resilient Fruit Breeding

Global warming is no longer a far-off risk—it's altering the landscapes of farm, vineyard, and garden alike with every passing season. Temperature increase, rainfall uncertainty, salinity and extreme events are currently affecting fruit productivity and quality at worldwide level. Fruit plants, as a rule, are perennials, and are confined to growing in a defined geographical area in which they are most vulnerable to climatic aberrations. Traditional strains that had adapted to a particular climate are now suffering heat stress, disrupted flowering, or increased pest incidence. Fruit breeding of the future needs to, therefore, be resilience breeding – breeding for types that can evolve, survive and excel even in a contrary climate. Achieving this mission entails melding DNA, RNA, and proteins with such conventional breeding wisdom as the value of seeing the whole plant and its progeny rather than isolating single traits.

Changing Climate, Changing Orchards: Key Challenges

Climate change is changing the expectations for fruit growing. Orchards that flourished for generations under predictable seasonal patterns are being subjected to heat waves, erratic rainfall, and pest pressures they have never known before. Fruit crops are also particularly susceptible due to their perennial nature, and long gestation period. The below climate stresses are among the most critical and defining threats to the future of fruit production.

Temperature Extremes

Among climate change, the warming temperature is the most visible and destructive symptom. Fruit crops are extremely sensitive to heat stress and exhibit clear physiological and developmental disorders. Fruits can get sunburned, leaves can be scorched and fruit set can be reduced by desiccation of pollen and drying of the stigma due to high summer temperatures. When heat persists for a longer time, it speeds up respiration rate and the decrease in carbohydrates becomes greater, leading to poor flavor development.

In temperate fruit crops, including apple, pear, and peach, chilling requirements are frequently not fulfilled due to warming winters. This causes delayed, inconsistent flowering, small fruit set, and small uneven ripening. Apples that were once restricted to hillsides are now moving up to higher, cooler elevations, opening up the traditional orchard belts to threats. Heat stress shortens fruit development periods, resulting in smaller fruits with lower sugar content in tropical and subtropical fruits (e.g., mango, guava and citrus) and in wine grapes. Hot, dry winds desiccate mango panicles and reduce pollination success. Also, grapes and pomegranates develop berry cracking and sunburn with consequential loss of marketable yield.

In general, temperature fluctuations have a direct influence on fruit physiology, biochemical components, and post-harvest duration, and thus, heat tolerance should be the main breeding target for the next generation of cultivars.

Drought and Water Scarcity

Water is the most important aspect for fruit crops, as it has an immediate effect on the flower initiation, fruit set and fruit growth. Extended drought or unreliable rainfall diminish the soil moisture, leading to wilt, early fruit drop, and lower production. In extreme situations, drought stress results in death of the tree or irreparable damage to the roots.

Rainfed fruit systems — such as ber, custard apple, pomegranate, aonla, and tamarind — are worst-affected. In pomegranate, drought at flowering reduces aril formation and fruit size, in mango, drought induces severe fruit drop at marble stage. Drought also limits nutrient and water absorption as well as photosynthesis, leading to poor plant growth.

Besides yield loss, drought stress affects fruit quality by decreasing total soluble solids (TSS), the content of vitamins, and increasing fruit cracking and susceptibility to pests. Breeding for deep rooted cultivars and rootstocks with greater water-use efficiency is increasingly being recognized as a viable adaptation option. Integrating genetic enhancement and water-use efficient technologies such as drip and fertigation would provide further strength to sustain under water-constrained environments.

Flooding and Waterlogging

At the opposite end of the moisture balance, heavy rain and flooding pose another set of problems. Waterlogging starvation of roots oxygen induced root asphyxiation, mineral nutrient deficiency and tree vigor reduction. Persistent submergence also causes root rot and death of the tree in severe conditions. High water tables are detrimental to crops like banana, guava, papaya and sapota. In banana farms, standing water for a few days or longer may lead to pseudostem rot, leaf yellowing and diminished bunch size. Nutrient uptake by the guava roots submerged under water is reduced and fruit development is also impacted. Intense rain also promotes the outbreak of diseases such as Phytophthora, the Fusarium wilt and collar rot which are highly adapted to moist soils.

Breeding and selection of short-term waterlogging tolerant cultivars and rootstocks along with better drainage management is required to sustain fruit yield in flood-prone soils.

Emerging Pests and Diseases

One of the most damaging consequences of climate change is the shifting behavior and range of insects and diseases. Increasing temperatures, humidity changes, and warmer winters are favoring the survival of many insect pests and pathogens.

For instance the fruit fly (*Bactrocera spp.*) which was previously limited to tropical belts is now found in subtropical and even temperate regions. Under hot, dry weather mealybugs, thrips and mites are increasing, whereas anthracnose, powdery mildew and bacterial blight prevail under moist weather.

Pest generations are becoming shorter and more frequent, which means fruit crops are feeling more pressure than ever. Conventional control methods are less effective as pests evolve resistance more quickly under variable climates.

Therefore, breeding efforts are turning more and more towards combined resistances—genetically tolerant fruit to major pest and pathogens with physiologically robust fruit against abiotic stress. The practice also reduces dependency on pesticides while maintaining sustainable health of the orchard.

Pollination and Phenology Shifts

Climate change is faintly but fundamentally disrupting flowering cycles and pollination dynamics in fruit crops. Most fruit trees are highly dependent on insects, and in particular bees, to be adequately pollinated. But flowering time and pollinator activity are also affected by temperature and precipitation anomalies, resulting in a bad match between the two. In fruit crops such as litchi, apple and citrus, a mismatch of just a few days can significantly reduce fruit set. Warm winters tend to delay or inhibit flowering in low-chill varieties, and heavy rains wash away pollen and keep pollinators from visiting flowers. Apart from pollination, phenological changes like early blooming, shortened fruit development or delayed ripening are prevalent. These changes impact not only yield but also disrupt harvest scheduling, market availability, and processing cycles. To counter these strain, breeders are focusing on flowering varieties with expanded temperature ranges and phenological stabilities. However, encouraging pollinator-friendly orchards with habitat and reduced pesticide use is also vital to maintaining fruit set in a changing climate.

What Is Climate-Resilient Fruit Breeding?

Breeding for climate resilience is the effort to breed cultivars that can continue to convey high yields of quality fruit to the grower, also in the face of stress caused by a variable or extreme climate. Dob is exploiting abiotic stress tolerance (heat, drought, salinity, cold) and combining this with biotic resistance to (co-)evolving pests and diseases. The overall aim is to develop fruit crops that can be relied upon to maintain yield and nutritional content in the presence of environmental variability for stability across agro-climatic regions.

This paradigm of breeding advances traditional hybridization with state-of-the-art genomic, molecular and physiological tools, and accelerating varietal development. Through selection for traits such as water-use efficiency, stress tolerance, and pest resistance, breeders improve the adaptability and sustainability of fruit crops. Such hardy cultivars are the best insurance for farmer's income and consumer's food and nutritional security and hence a promising plank for sustainable horticulture under a scenario of altered climate.

Genetic Resources: The Foundation of Resilience

Wild relatives and traditional landraces serve as a pool of valuable genes for tolerance to multiple environmental stresses.

They have natural drought, salinity, heat and pest adaptations evolved over thousands of years.

Such genetic resources underpinned the development of current breeding for enhanced climate resilience.

By breeding elite cultivars with robust wild relatives, breeders can introduce traits such as drought tolerance or salt tolerance.

Such variation widens the genetic base of fruit crops and enhances their climate adaptability. Hence, the conservation and utilization of wild germplasm is a priority for advancement of next-generation resilient fruit cultivars.

Table 1. Wild Relatives Contributing to Climate Resilience in Fruit Crops

Fruit Crop	Wild Relative / Landrace	Useful Trait	Origin / Remark
Mango	<i>Mangifera sylvatica</i>	Drought tolerance	Eastern Himalayas
Citrus	<i>C. ichangensis, C. latipes</i>	Cold & frost tolerance	China-Indo-Burma region
Banana	<i>Musa balbisiana</i>	Drought and disease resistance	NE India
Guava	<i>Psidium friedrichsthalianum</i>	Flood tolerance	Central America
Pomegranate	Wild types from Iran-Afghanistan	Heat tolerance	Arid regions
Apple	<i>Malus sieversii</i>	Broad stress tolerance	Central Asia

Breeding Approaches for Climate Resilience

Conventional Breeding

Breeding continues to be based on crossing and selection. Example: Fruit quality and adaptability were enhanced in mango through hybridization ('Amrapali' × 'Mallika'). In ber and guava, recurrent selection has produced hardy, high-yielding types.

Marker-Assisted and Genomic Breeding

These molecular markers associated with stress-responsive traits expedite the selection process. Genomic selection (GS) predicts performance based on DNA information, thus allowing selection decisions to be made at an early stage, which can save several years in case of perennial crops.

Biotechnological and Gene Editing Tools

Screening in vitro under salt or drought stress conditions for tolerant cell lines. CRISPR-Cas9 allows for targeted editing of tolerance genes, such as those involved in osmolyte production or stomatal response.

Table 2. Traditional vs Modern Breeding Tools for Climate Resilience

Approach	Key Features	Advantages	Limitation
Conventional hybridization	Field-based crossing and selection	Simple, low-cost	Time-consuming
Marker-assisted selection	DNA-based selection	Early screening	Requires lab setup
Genomic selection	Uses genome-wide data	Predicts performance	High computational need
Gene editing	Direct modification	Precise & fast	Regulatory restrictions

Physiological and Morphological Traits for Climate Tolerance

Adaptations in these varieties of the plant type could be in the form of morpho-physiological trait in a way that conducive for their survival. Such as thick cuticles and deep roots, osmotic adjustment and antioxidant defense systems.

Table 3. Key Physiological Traits Linked with Climate Resilience

Trait	Role	Example Fruit Crops
Deep root system	Accesses deep moisture	Ber, tamarind
Thick waxy leaves	Reduces transpiration	Guava, citrus
Osmolyte accumulation	Maintains turgor	Mango, banana
Heat-shock protein expression	Protects enzymes under heat	Grape, mango
Antioxidant enzymes	Mitigate oxidative stress	Pomegranate, papaya

Breeding for Specific Climate Challenges

Drought and Heat Tolerance

‘Dashehari’, ‘Neelum’ and other cultivars of Mango exhibit heat tolerance. Ber cultivars (‘Goma Kirti’, ‘Umran’) are suitable for dry areas.

Cold and Frost Tolerance

In apple and citrus, low-chill cultivars such as the ‘Anna’ apple and the ‘Kinnow’ are breeding targets.

Salinity and Alkalinity Tolerance

Guava cultivated on salt-tolerant rootstocks (*Psidium guineense*) and on banana hybrids (‘BRS Platina’) maintains production in saline soils.

Waterlogging and Flood Resilience

Banana selections from *Musa balbisiana* tolerate temporary flooding.

Rootstock–Scion Interactions for Climate Adaptation

Rootstocks have a profound impact on the grafted scion's drought tolerance through alteration of water uptake, vigor, and nutrient use efficiency.

Table 4. Rootstocks for Abiotic Stress Tolerance

Crop	Rootstock	Key Stress Tolerance
Mango	‘Vellaikolamban’	Drought and salinity
Citrus	Rough lemon, <i>C. jambhiri</i>	Drought
Apple	M-9, MM-111	Cold and drought
Guava	<i>Psidium guineense</i>	Salinity
Grapes	110R, 140Ru	Drought and lime tolerance

Using stress-tolerant rootstocks can double orchard lifespan and stabilize yields under adverse conditions.

Smart Breeding: Digital and Climate-Informed Approaches

Today, breeders also use GIS mapping, AI, and climate models to locate best test locations and for genotype \times environment interaction predictions. Automated phenotyping systems rely on the use of drones or sensors to collect data on canopy temperature, chlorophyll and water stress indices, among others, facilitating the selection of drought tolerant genotypes.

Participatory and Farmer-Led Breeding Approaches

and adapts to the realities of farming systems. Participatory approaches engage farmers in selection trials to capture their knowledge on drought patterns, taste preference and local adaptability.

Farmers' response to research also helps highlight traits that may be overlooked in the lab — such as delayed cracking of fruit in pomegranates, or resistance to fruit drop in mango.

Policy, Institutional, and Extension Support

The importance of institutional coordination is well known. National horticulture missions and state agricultural universities are instrumental in testing and releasing climate-fit cultivars.

Public-private partnerships may facilitate the rapid dissemination of quality planting material, through nurseries and start-ups.

Table 5. Examples of Institutional Initiatives

Agency / Program	Focus Area
ICAR-AICRP on Fruits	Stress screening and evaluation
DBT-Biotech Missions	Genomic tools for tolerance breeding
NMSA / MIDH	On-farm demonstrations of resilient varieties
FAO & CGIAR platforms	Global germplasm sharing and modeling

Case Studies of Success Stories

Mango

‘Amrapali’ (Dashehari × Neelum) combines good fruit quality with tolerance to erratic climate. New selections like ‘Arunika’ and ‘Sindhu’ are also showing resilience.

Apple

Low-chill cultivars ‘Anna’ and ‘Tropical Beauty’ allow apple cultivation in warmer plains.

Banana

Hybrids such as ‘BRS Platina’ and ‘FHIA-17’ withstand drought and Fusarium wilt.

Pomegranate

‘Bhagwa’ shows tolerance to heat and drought while maintaining fruit color and export quality.

Table 6. Released or Promising Climate-Resilient Fruit Varieties

Crop	Variety	Climate Trait
Mango	‘Arunika’, ‘Amrapali’	Heat & drought tolerance
Banana	‘FHIA-17’, ‘BRS Platina’	Drought & disease resistance
Apple	‘Anna’, ‘Tropical Beauty’	Low chilling requirement
Pomegranate	‘Bhagwa’, ‘Ruby’	Heat tolerance
Citrus	‘Kinnow LS’, ‘Pusa Udit’	Frost & canker tolerance

Challenges and Gaps in Current Breeding Efforts

- Long juvenile periods:** Fruit trees take years to bear, slowing breeding cycles.
- Limited stress-screening infrastructure:** Few facilities simulate multi-stress environments.
- Poor germplasm utilization:** Many tolerant wild species remain untapped.
- Fragmented data management:** Lack of shared phenotypic and genotypic databases.
- Adoption barriers:** Farmers hesitate to plant new cultivars without proven market demand.

Future Perspectives: Toward Resilient and Sustainable Orchards

The future of fruit breeding will be a fusion of technologies and innovation, involving genomics, precise rootstock selection and adaptive management. Assisted early selection can shorten new breeding cycles. Climate modelling can inform region-dependent variety deployment. Linking resilience to nutrition, flavour and shelf life (to ensure consumer acceptance) and to farmer profitability is just as important. Breeding must not only shield fruit crops from climate risks but also increase their contribution to food and nutritional security.

Conclusion: Breeding Hope for a Hotter Planet

Breeding fruit to be resilient to climate—is important and urgent necessity, not a luxury. Combining traditional knowledge with genomic technologies, breeders are developing varieties that can withstand heat, drought, salinity and disease. Each of the bona fide resilient varieties is a commitment to stability for farmers, quality for consumers, and sustainability for the planet. The fruity bounty of the orchards of tomorrow will not only be excellent, but tomorrow’s orchards will also be living monuments to our species’ ability to engineer its survival and proved by climate change.