

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 11 (November, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Nano Biofertilizers: A New Era of Sustainable Horticulture

*Deependra Kushwah and Tikam Das Vaishnav

RNT College of Agriculture, Kapasan (MPUAT, Udaipur), Rajasthan, India

*Corresponding Author's email: deependradlp123@gmail.com

Nano biofertilizers are rapidly revolutionizing sustainable horticulture by utilizing nanotechnology and beneficial microorganisms to optimize nutrient delivery, reduce fertilizer losses, and promote plant health. This article provides a comprehensive analysis of the principles, formulations, mechanisms, applications, and challenges of nano biofertilizers in horticulture. Emphasis is placed on their role in enhancing nutrient use efficiency, soil fertility, crop yield, stress tolerance, and environmental sustainability. Current research highlights both the promise and limitations of nano biofertilizer adoption, with future prospects pointing toward innovation-driven, eco-friendly horticultural practices.

Introduction

The growing global population and increasing demand for high-quality horticultural produce have intensified agricultural pressures, creating a need for more sustainable and resource-efficient practices. Conventional chemical fertilizers, despite their yield-enhancing benefits, suffer from low nutrient use efficiency, contribute to pollution, and degrade soil health over time. By 2050, the world must increase agricultural productivity by nearly 70% to ensure food security, making innovative solutions essential. Nano biofertilizers—an integration of nanomaterials with beneficial biofertilizers—represent a promising advancement. They combine precision nutrient delivery with microbial stimulation, opening a new era of sustainable horticulture characterized by improved resilience, productivity, and environmental stewardship.

Concept and Formulation

Nano biofertilizers are advanced inputs where beneficial microorganisms are encapsulated, immobilized, or conjugated with nanoparticles (1–100 nm). Nano-carriers may be:

- **Organic:** Chitosan, alginate
- **Inorganic:** Silica, zeolite, iron oxides

These carriers allow targeted, slow, and controlled nutrient release. Three categories of nanofertilizers include:

1. **Nanoscale fertilizers:** Nutrients delivered as nanoparticles
2. **Nanoscale additives:** Nanoparticles added to traditional fertilizers
3. **Nanoscale coatings:** Nanomembranes that regulate nutrient solubility for precise release

Microorganisms such as nitrogen fixers, phosphate-solubilizing bacteria, and PGPR are combined with nanoparticles to enhance survival, colonization, and activity in the rhizosphere.

Mechanisms of Action

Nano biofertilizers enhance nutrient delivery and plant uptake through:

- **Controlled release:** Synchronizes nutrient availability with plant demand, reducing leaching and volatilization.
- **Improved microbial stability:** Nano-encapsulation increases microbial viability and activity.

- **Enhanced plant absorption:** Nanoparticles easily penetrate plant tissues, improving nutrient uptake.
- **Stress tolerance:** Improves plant resilience to drought, salinity, heavy metals, and pathogens.

Biosynthesized nanoparticles produced by microbes (fungi, algae, bacteria) further enhance compatibility and performance.

Advantages Over Conventional Fertilizers

- **Higher Nutrient Use Efficiency (NUE):** Can reach up to 60%, compared to 30–40% with traditional fertilizers.
- **Environmental Sustainability:** Reduced chemical input, minimal nutrient runoff, and enhanced soil health.
- **Improved Soil Microbial Diversity:** Due to lower toxicity and beneficial microbial interactions.
- **Higher Crop Yield and Quality:** Enhanced fruit size, flavor, nutrient density, and postharvest longevity.
- **Stress Mitigation:** Boosted antioxidant activity and defense mechanisms.

Types and Examples of Nano Biofertilizers

1. Macronutrient NBFs

- Nano nitrogen, phosphorus, potassium formulations
- Example: **Nano urea-coated zeolite** and **hydroxyapatite** slow-release carriers
- Release nutrients for up to **60 days**

2. Micronutrient NBFs

- Zn, Fe, Mn, Cu nanoparticles
- Useful for correcting micronutrient deficiencies
- Highly effective in **calcareous soils**

3. Chitosan-based NBFs

- Biodegradable and antimicrobial
- Supports microbial growth and plant immunity

Applications in Horticultural Crops

Vegetables

- Nano NPK through fertigation improves potato yield
- Tomato and cucumber exhibit enhanced fruit size, quality, and disease resistance

Fruits

- Nano zinc and nano boron increase yield and shelf life in **mango, pomegranate, apple, grapes**
- NPK nanofertilizers outperform conventional fertilizers in **date palm and olive**

Spices, Medicinal & Aromatic Plants

- Iron oxide nanoparticles improve growth and essential oil content in **basil and peppermint**
- Improved productivity in **saffron, dill, black cumin**

Floriculture

- Nano-calcium fertilizers extend vase life and improve quality in **gerbera, poinsettia**

Plant Nano-Nutrition

Common nanoparticles used: **ZnO, SiO₂, Fe₃O₄, TiO₂, CuO** Benefits include increased chlorophyll, biomass, antioxidant activity.

Challenges and Limitations

- **High production cost and limited scalability**
- **Lack of formulation standardization** and insufficient long-term field data
- **Regulatory gaps** in safety standards
- **Potential phytotoxicity:**
 - ✓ Ag and Al₂O₃ nanoparticles may reduce growth or accumulate in edible tissues

- **Low farmer awareness** and limited training availability

Future Prospects

To realize their full potential, the following are needed:

- Cost-effective, scalable production technologies
- Strong safety regulations and environmental risk assessments
- Crop-specific and soil-specific nano biofertilizer formulations
- Widespread awareness and training programs
- Development of multifunctional nano-systems and smart-delivery carriers
- Enhanced field trials under diverse agro-climatic conditions

References

1. Ali SS et al., *Nano-biofertilizers: Synthesis, advantages, and applications*, Biofertilizers, Woodhead Publishing, 2021.
2. Chugh G et al., *Nanobiotechnology for agriculture*, Sustainability, 2021.
3. Yadav AN et al., *Nano-biofertilizers for Agricultural Sustainability*, JABB, 2023.
4. Mandal D, Lalrinchhani, *Nanofertilizer and its application in horticulture*, Journal of Applied Horticulture, 2021.
5. Sharma B et al., *Nano-biofertilizers as emerging strategies for sustainable agriculture*, Science of The Total Environment, 2023.
6. Kalia A, Kaur H, *Nano-biofertilizers for enhanced nutrient use efficiency*, Springer, 2019.