

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 10 (October, 2025)

Available online at http://www.agrimagazine.in
[©]Agri Magazine, ISSN: 3048-8656

Protected Cultivation of High-Value Vegetables Using Polyhouses: A Pathway to Precision and Profitability

Pushpendra Singh¹, *Pooja A. Dabholkar², Shruti Singh³ and Shivendu Pratap Singh Solanki⁴

¹Assistant Professor (Horticulture), CARS, Narayanpur, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

²Ph.D. (Hort.) Scholar, Department of Vegetable Science, College of Horticulture Dapoli, Dr. B.S.K.K.V., Dapoli, Maharashtra, India

³Faculty, Department of Environmental Biology, Awadhesh Pratap Singh University, Rewa, Madhya Pradesh, India

⁴Dist. Horticulture Officer, Department of Horticulture, Kurukshetra (Haryana), India *Corresponding Author's email: poojadabholkar43@gmail.com

Protected farming has evolved as a breakthrough method in modern agriculture, providing solutions to climatic unpredictability, insect pressure, and market volatility. Polyhouses are the most cost-effective and efficient way to grow high-value crops like capsicum, tomato, cucumber, and lettuce in controlled conditions. Polyhouse farming allows farmers to control microclimatic variables such as temperature, humidity, and light, resulting in year-round production, larger yields, and higher quality products. Polyhouse farming has become a cornerstone of precision horticulture by using drip fertigation, automation, and hybrid seed technologies. This article delves into the idea, design, management techniques, advantages, economic viability, problems, and future prospects of polyhouse-based vegetable production, with a focus on its role in developing climate-resilient and profitable agricultural systems.

Keywords: Protected cultivation, greenhouse, polyhouse, drip fertigation, resource efficiency, microclimate management, climate resilience.

Introduction

Agriculture now faces a twofold challenge: feeding an expanding population while dealing with limited resources and unpredictable weather patterns. Traditional open-field vegetable farming is prone to weather extremes, insect infestations, and poor postharvest quality. To circumvent these limits, the notion of protected cultivation—growing crops in controlled environments—has gained popularity across the world (Singh et al. 2015).

Polyhouses have evolved as an accessible and cost-effective protective solution for small and medium-sized farms. A polyhouse is a framed structure coated with UV-stabilized polyethylene film that generates a conducive microclimate for plant development by regulating temperature, humidity, and radiation. This technique allows for year-round cultivation of high-value crops such as capsicum, tomato, cucumber, and leafy greens while improving quality and productivity.

India, Israel, and the Netherlands are in the forefront of implementing protected cultivation. In India, the National Horticulture Mission (NHM) and the Mission for Integrated Development of Horticulture (MIDH) have pushed polyhouses as a method of increasing revenue, employment, and export competitiveness.

Principles of Protected Cultivation

Protected farming operates on the idea of microclimate manipulation, which creates optimal circumstances for plant development regardless of external weather variations. The four primary environmental elements handled by a polyhouse are:

- **1. Humidity Control:** Proper ventilation, fogging systems, and mulching all contribute to maintaining optimal humidity levels for crops such as cucumbers and capsicum.
- **2. Light Management:** Diffused light enhances photosynthesis and fruit colouration.
- **3. Temperature Regulation:** Polyethylene coverings trap solar radiation, providing optimal warmth in the winter and preventing overheating in the summer.
- **4. Soil and Nutrient Management:** Drip fertigation ensures that water and nutrients are evenly distributed to the root zone, reducing losses (Sharma et al., 2018).

Design and Construction of Polyhouses

A polyhouse is made out of a frame (steel or bamboo) wrapped with UV-stabilized polyethylene film. The building may be naturally ventilated or climate-controlled, depending on the amount of technology and expenditure.

Types of Polyhouses

- 1. Climate-Controlled Polyhouses:
- Suitable for places with harsh weather conditions.
- Features fans, cooling pads, foggers, and automatic fertigation.
- Provides fine control over temperature and humidity.
- 2. Polyhouses with natural ventilation:
- Suitable for milder temperatures.
- Air exchange is achieved by side vents and roof apertures.
- Low-cost and simple design.

Structural features

- Orientation: East-West for even light distribution.
- For stability, use a concrete or pipe foundation.
- Accessories include shade netting, insect-proof screens, and drip irrigation lines.
- Cladding is made of 200-micron UV-stabilized polyethylene film.

Proper design promotes light diffusion, structural stability, and effective ventilation, all of which are necessary for consistent yields (Kumar et al. 2016).

High-Value Vegetable Crops Suitable for Polyhouse Cultivation

Polyhouses are primarily used for off-season and export-oriented vegetable production. Common crops include:

Crop Optimal	Temperature (°C)	Average Yield (t/ha)	Key Features
Tomato	18-28	150–200	Year-round production, better color and shelf life
Cucumber	20-30	180–250	Short duration, high yield
Capsicum (Bell Pepper)	20-30	120–160	Uniform fruit shape, high market demand
Lettuce	15-25	25–40	Ideal for hydroponics

These crops fetch 2–5 times higher prices than open-field vegetables, especially during off-season periods (Reddy et al., 2017).

Advantages of Polyhouse Cultivation

- **1. Superior Quality:** A consistent shape, color, and size increases marketability and export possibilities.
- **2. Efficient Input Use:** Drip fertigation uses 50-70% less water and 40-50% less fertilizer.

- **3. Higher Yields:** Crops such as cucumber and capsicum can enhance output by up to 5-10 times.
- **4. Extended Growing Seasons:** Allows for off-season and year-round production.
- **5. Climate Resilience:** Protects crops from high heat, cold, rain, and wind.
- **6. Reduced Pest Incidence:** A controlled environment reduces disease outbreaks.
- **7. Faster Return on Investment:** In high-value vegetable farming, break-even may be attained in 2-3 years.
- **8. Employment Generation:** Promotes entrepreneurship among young people and women.
- **9. Climate Resilience:** Protects crops from high heat, cold, rain, and wind (Patel et al., 2021).

Economic feasibility

Although the initial expenditure (₹800-1,200 per m² for naturally ventilated and ₹2,500-3,000 per m² for climate-controlled polyhouses) may appear excessive, yearly net returns frequently justify the expense.

- A 1,000 m² naturally ventilated polyhouse may produce 20-25 tons of capsicum yearly, resulting in net revenues of ₹4-6 lakh per year.
- National horticulture programs offer subsidies ranging from 50 to 70%, making polyhouse farming affordable to smallholders (Singh et al., 2015).

Challenges of Polyhouse Cultivation

- **1. Maintenance and Repairs:** Plastic films require replacing every 3-4 years.
- **2. High initial cost:** The main impediment to widespread adoption.
- **3. Pest Buildup:** Inadequate ventilation can lead to increased humidity and illness incidence.
- **4. Market Fluctuations:** Price drops during oversupply periods might reduce profitability.
- **5. Skill Requirements:** Trained personnel are needed for irrigation, fertigation, and pest management.
- **6. Power Requirements:** Automated systems rely substantially on power for fans and foggers.

Environmental and social effects

- Women's empowerment: Promotes involvement in high-value vegetable growing.
- •Polyhouse horticulture saves 60% more water than open-field techniques.
- Lower pesticide levels: safer for customers and the environment.
- **Job creation:** Establishes rural jobs in seedling production, packaging, and marketing. Thus, polyhouse technology promotes sustainable intensification by boosting output while maintaining environmental integrity (Sharma et al., 2018).

Future Prospects

The future of protected cultivation is inextricably linked to precision horticulture, digital automation, and climate-smart agriculture. Research is undertaken to create low-cost polyhouse models with indigenous materials.

- Encourage cooperative marketing strategies and cold-chain links for value addition.
- Create heat-tolerant and compact vegetable hybrids that are ideal for regulated conditions.
- Use AI-powered decision-support systems for irrigation, pest prediction, and harvest scheduling.

Conclusion

Protected growing in polyhouses has altered vegetable production, making it more profitable, accurate, and robust. By providing control over environmental factors, it assures a steady supply of high-quality product and higher profits for farmers. Despite economic and technological obstacles, advances in automation, renewable energy, and low-cost structures are making polyhouse farming more affordable.

References

- 1. Singh, B., Reddy, M. C., & Sharma, R. R. (2015). Protected cultivation of vegetables in India: Challenges and opportunities. *Indian Horticulture Journal*, 7(1), 1–10.
- 2. Kumar, R., Singh, S., & Pandey, A. (2016). Design and economics of polyhouse structures for vegetable cultivation. *Agricultural Engineering Today*, 40(4), 23–29.
- 3. Sharma, R. R., Patel, V. B., & Singh, S. (2018). Protected cultivation technologies for quality vegetable production. *Horticultural Science*, 45(2), 101–110.
- 4. Reddy, M. C., Sahu, G., & Patel, S. (2017). High-value vegetable production under protected structures. *Journal of Agricultural Research and Development*, 9(3), 15–21.
- 5. Patel, N. L., Singh, D. K., & Jain, R. (2021). Polyhouse cultivation for climate resilience and productivity enhancement. *Journal of Horticultural Advances*, 12(2), 77–85.
- 6. Patil, S., & Kumbhar, A. (2019). Economic viability and sustainability of polyhouse vegetable cultivation. *International Journal of Agronomy and Plant Production*, 10(5), 230–239.
- 7. Mandal, S., Ghosh, D., & Bhattacharya, S. (2020). IoT-based smart greenhouse for vegetable production. *Computers and Electronics in Agriculture*, 176, 105–118.
- 8. Singh, A. K., & Kumar, P. (2020). Microclimate modification and yield improvement through protected cultivation. *Environment and Ecology*, 38(2A), 701–707.
- 9. Bhatnagar, P., & Verma, A. (2019). Role of protected cultivation in vegetable production under Indian conditions. *Vegetable Science*, 46(1), 55–62.
- 10. Kaur, J., & Joshi, S. (2022). Climate-smart horticulture through protected structures: A review. *Sustainable Agriculture Reviews*, 51, 145–162.