

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 10 (October, 2025)

Available online at http://www.agrimagazine.in

**Agri Magazine, ISSN: 3048-8656

Molecular Marker-Assisted Selection for Disease Resistance

Souvan Dhara¹, *Mouli Paul¹, Elizabeth Martin², Laavanya G A³, Subbara Pavithra⁴, Anjali Verma⁵, Godugu Pradeep Raja⁶, V. Lakshmi Prasanna⁷ and Sushree Suparna Mahapatra⁷

¹M.Sc. Scholar, Department of Genetics and Plant Breeding, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, India ²Ph.D.Scholar, Department of Food and Nutrition, University of Agricultural Sciences, Dharwad-580005, Karnataka, India

³M.Sc. Scholar, Department of Genetics and Plant Breeding, Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, India
⁴Ph.D. Scholar, IARI, New Delhi, India

⁵Ph.D. Scholar, Department of Plant Pathology, BUAT, India ⁶Ph.D. Scholar, Division of Entomology, ICAR-IARI, New Delhi, India ⁷Assistant Professor, Faculty of Agricultural Sciences, Siksha 'O' Anusandhan, Deemed to be University, Odisha, India ^{*}Corresponding Author's email: moulipaul2827@gmail.com

Plant diseases pose a major threat to global food security by reducing crop productivity and quality. Conventional breeding for disease resistance relies heavily on phenotypic selection, which is often time-consuming, influenced by environmental conditions, and limited by the availability of reliable screening methods. The advent of molecular markers has revolutionized breeding strategies by enabling Marker-Assisted Selection (MAS). MAS allows indirect selection for desirable alleles using DNA-based markers linked to disease resistance genes, thereby accelerating genetic improvement and enhancing breeding precision.

Concept of Marker-Assisted Selection

Molecular markers are DNA sequences that are tightly linked to specific traits of interest and can be detected using molecular tools. In MAS, breeders select individuals carrying resistance alleles based on marker genotyping, eliminating the need for extensive phenotypic screening. The key features of MAS include:

- Efficiency: Selection can be done at the seedling stage.
- Accuracy: Independent of environmental fluctuations.
- Speed: Reduces breeding cycles by early and precise selection.
- Pyramiding: Allows combining multiple resistance genes into a single genotype.

Types of Molecular Markers Used in MAS

- 1. Restriction Fragment Length Polymorphism (RFLP) first-generation markers, highly reliable but labor-intensive.
- 2. Random Amplified Polymorphic DNA (RAPD) simple but low reproducibility.
- 3. Simple Sequence Repeats (SSR/microsatellites) co-dominant, highly polymorphic, widely used in disease resistance breeding.
- 4. Single Nucleotide Polymorphisms (SNPs) most abundant, high-throughput, ideal for modern MAS
- 5. Sequence Tagged Sites (STS) and SCAR markers gene-targeted and specific.

AGRI MAGAZINE ISSN: 3048-8656 Page 177

MAS in Disease Resistance Breeding

Disease resistance is often controlled by major R-genes (qualitative resistance) or multiple minor genes (quantitative resistance). MAS is particularly effective for:

- Major resistance genes: e.g., *Xa21* for bacterial blight resistance in rice, *Lr34* for leaf rust resistance in wheat.
- Pyramiding resistance genes: combining multiple genes to provide durable resistance and reduce pathogen breakdown.
- Background selection: accelerating recovery of the recurrent parent genome in backcross breeding.

Examples of MAS for Disease Resistance

- Rice: Incorporation of *Xa4*, *Xa21*, *xa13*, and *xa5* genes for bacterial blight resistance using SSR and SNP markers.
- Wheat: Deployment of *Lr34*, *Sr2*, and *Yr36* genes for rust resistance through SNP genotyping.
- Maize: Resistance breeding against downy mildew (*Peronosclerospora spp.*) and maize streak virus using SSR/SNP-based markers.
- Tomato: Introgression of *Mi-1* gene for nematode resistance and *Pto* gene for bacterial speck resistance.

Advantages of MAS in Disease Resistance Breeding

- Reduces the need for pathogen inoculation and field screening.
- Facilitates simultaneous selection for multiple traits.
- Allows selection in off-season or non-endemic areas.
- Enhances durability of resistance through gene pyramiding.

Challenges and Future Prospects

Despite its advantages, MAS has limitations such as high cost of genotyping, lack of tightly linked markers for some resistance genes, and reduced efficiency in polygenic resistance traits. However, with the advancement of genomics-assisted breeding, next-generation sequencing (NGS), and genome-wide association studies (GWAS), MAS is evolving towards Genomic Selection (GS), which can predict resistance based on genome-wide marker data. Integration of MAS with CRISPR/Cas-based genome editing also holds great promise for precise engineering of durable disease resistance.

Conclusion

Molecular Marker-Assisted Selection has emerged as a powerful tool for accelerating disease resistance breeding. By enabling precise, rapid, and environment-independent selection, MAS significantly improves the efficiency of developing resistant crop varieties. With continuous advances in molecular biology and genomics, MAS will remain at the forefront of sustainable crop improvement strategies, contributing to global food and nutritional security.

AGRI MAGAZINE ISSN: 3048-8656 Page 178