

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 10 (October, 2025)

Available online at http://www.agrimagazine.in

**Open Comparison of Com

The Unrealized Potential of Agroforestry for an Emissions-Intensive Agricultural Commodity

*Shivam Dinkar¹, Sameer Daniel², Joy Phionehas³, Tanmaya Nayak³, Subhakanta Samantray⁴ and V. Harikrishna Reddy⁵

¹Ph.D. Scholar, Department of Silviculture and Agroforestry, College of Agriculture, Raipur, IGKV, Chhattisgarh, Raipur, India

²Associate Professor, College of Forestry, SHUATS, UP, India

³Research Scholar, College of Forestry, SHUATS, UP, India

⁴Regional Research and Technology Transfer Station (RRTTS), Odisha University of Agriculture and Technology (O.U.A.T.), Keonjhar-758002, Odisha, India

⁵Undergraduate Student, ITM, Gwalior, India *Corresponding Author's email: shiyamdinkar1997@gmail.com

Global agriculture is a major contributor to greenhouse gas (GHG) emissions, particularly in the production of emissions-intensive commodities such as beef, dairy, palm oil, soy, and cocoa. Despite the pressing need for climate-smart practices, agroforestry—a proven land use system integrating trees with crops and/or livestock—remains underutilized in these highemission supply chains. This article examines the untapped potential of agroforestry to mitigate emissions, enhance soil carbon sequestration, restore degraded lands, and increase resilience in the production of emissions-intensive agricultural commodities. We explore barriers to adoption, opportunities for integration, and the role of policies, certification schemes, and carbon markets in unlocking this potential.

Introduction

Agriculture contributes approximately 25–30% of global greenhouse gas emissions, with significant proportions stemming from land use change, enteric fermentation, deforestation, and synthetic inputs used in commodity production. Crops such as soy and palm oil are linked to large-scale deforestation, while livestock systems generate vast methane and nitrous oxide emissions. In contrast, agroforestry offers a multifunctional and scalable approach to transform these supply chains. It enhances carbon sinks, supports biodiversity, and improves land productivity without necessarily reducing yields. Yet, it remains marginal in the global production of emissions-intensive commodities.

Agroforestry: A Climate-Smart Land Use System Definition and Types

Agroforestry involves the deliberate integration of trees and shrubs into farming systems. Major types relevant to commodity systems include:

System	Description
Silvopastoral	Trees + pasture + livestock (e.g., beef, dairy)
Agrosilvicultural	Trees + crops (e.g., soy, cocoa, coffee)
Agrosilvopastoral	Trees + crops + livestock in integrated landscapes

Climate Benefits

- Carbon sequestration: Both aboveground biomass and soil organic carbon
- Methane mitigation: Improved feed quality and microclimates reduce enteric fermentation

AGRI MAGAZINE ISSN: 3048-8656 Page 154

- Nitrous oxide reduction: Trees regulate nitrogen cycles and reduce fertilizer needs
- Deforestation avoidance: Intensifies production on existing lands, reducing pressure on forests

Emissions-Intensive Commodities and Agroforestry Integration Potential Beef and Dairy (Livestock)

- Emissions from enteric methane, manure, and feed production
- Agroforestry intervention: Silvopastoral systems
- ✓ Shade trees improve animal welfare and productivity
- ✓ Fodder trees reduce reliance on grain-based feeds
- ✓ Carbon storage in pastures and tree biomass

Palm Oil

- Major driver of tropical deforestation
- Agroforestry intervention:
- ✓ Intercropping palm with timber, fruit, or nitrogen-fixing species
- ✓ Enhances structural diversity, soil health, and carbon stocks

Soy

- Linked to deforestation and monoculture degradation
- Agroforestry intervention:
- ✓ Contour planting, windbreaks, leguminous trees to fix nitrogen
- ✓ Buffer zones with agroforestry to reduce land conversion impacts

Cocoa and Coffee

- Often cultivated under shade historically, now increasingly full sun
- Agroforestry intervention:
- ✓ Shade-grown systems improve biodiversity, carbon storage, and climate resilience
- ✓ Proven market premiums for "climate-smart" cocoa/coffee

Barriers to Adoption

Despite clear benefits, agroforestry remains marginal in emissions-intensive commodity systems due to:

Barrier	Description
Economic incentives	Short-term yields prioritized over long-term sustainability
Land tenure insecurity	Disincentivizes long-term tree planting
Knowledge gaps	Farmers and agribusinesses lack awareness or training
Policy disincentives	Agricultural subsidies often favor monocultures
Market structures	Commodity value chains reward volume, not sustainability
Certification	Agroforestry benefits are often not captured in carbon or eco-label
complexity	schemes

Enabling the Transition: Unlocking Agroforestry Potential Policy and Institutional Support

- Integrate agroforestry into Nationally Determined Contributions (NDCs)
- Incentivize adoption via payments for ecosystem services (PES)
- Reform land tenure laws to support tree planting on farms

Carbon Markets and Climate Finance

- Agroforestry provides verifiable carbon sequestration
- Opportunities to participate in voluntary carbon markets or Article 6 mechanisms
- Co-benefits (biodiversity, water regulation) enhance carbon project value

Private Sector Engagement

- Sustainability commitments from companies (e.g., Nestlé, Mars, Unilever)
- Insetting strategies to reduce emissions within supply chains
- Partnering with smallholders to implement agroforestry at scale

Certification and Eco-Labelling

• Expand agroforestry recognition in schemes like:

AGRI MAGAZINE ISSN: 3048-8656 Page 155

- ✓ Rainforest Alliance
- ✓ Fairtrade
- ✓ Carbon-neutral labels
- Create premiums for agroforestry-compliant products

Case Studies

Case 1: Silvopastoral Systems in Colombia

- Integrated grass-legume-tree systems on degraded pastures
- Reduced methane emissions by 20–30%, improved milk yields
- Supported by REDD+ and government subsidies

Case 2: Shade-Grown Cocoa in Ghana

- Community-based agroforestry with native trees
- Increased carbon sequestration (5–8 Mg C/ha/yr)
- Access to niche markets with climate-smart cocoa labels

Case 3: Oil Palm Agroforestry in Indonesia

- Diversified systems combining palm oil with durian and timber species
- Increased farmer income and landscape carbon by >25% vs monoculture

Toward Realizing the Potential: A Call to Action

To unlock agroforestry's full potential in emissions-intensive commodity systems, coordinated efforts are needed across the value chain:

Stakeholder	Role
Governments	Create enabling policy and finance frameworks
Companies	Mainstream agroforestry in sourcing strategies
Farmers	Adopt and adapt agroforestry practices
Researchers	Generate evidence, tools, and species suitability models
Investors	Channel climate finance into integrated land use projects

Conclusion

Agroforestry offers a powerful, nature-based solution to decarbonize the production of emissions-intensive agricultural commodities. It addresses multiple global challenges—climate change, biodiversity loss, and rural livelihoods—through one integrative system. Yet its potential remains unrealized due to systemic barriers across policy, economics, and knowledge. As the world accelerates toward carbon neutrality and nature-positive production systems, agroforestry must move from the margins to the mainstream. By rethinking how commodities are produced, sourced, and valued, agroforestry can help rewrite the story of agriculture—from driver of emissions to engine of regeneration.

References

- 1. Mbow, C., et al. (2014). Agroforestry solutions to address food security and climate change challenges in Africa. *Current Opinion in Environmental Sustainability*, 6, 61–67.
- 2. FAO (2020). The State of the World's Forests: Forests, Biodiversity and People.
- 3. World Bank (2021). Transforming Agricultural Value Chains for Climate Resilience.
- 4. ICRAF (2021). Agroforestry and Carbon Markets.
- 5. Smith, P., et al. (2019). Land management options for reducing greenhouse gas emissions. *Nature Climate Change*, 9, 442–446.

AGRI MAGAZINE ISSN: 3048-8656 Page 156