

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 10 (October, 2025)

Available online at http://www.agrimagazine.in
[©]Agri Magazine, ISSN: 3048-8656

Advancing India's Agroforestry Potential: Leveraging Technology and Community Approaches for Sustainable Development

*Shivam Dinkar¹, Sameer Daniel², Joy Phionehas³, Tanmaya Nayak³, Subhakanta Samantray⁴ and V. Harikrishna Reddy⁵

¹Ph.D. Scholar, Department of Silviculture and Agroforestry, College of Agriculture, Raipur, IGKV, Chhattisgarh, Raipur, India

²Associate Professor, College of Forestry, SHUATS, UP, India

³Research Scholar, College of Forestry, SHUATS, UP, India

⁴Regional Research and Technology Transfer Station (RRTTS), Odisha University of Agriculture and Technology (O.U.A.T.), Keonjhar-758002, Odisha, India

⁵Undergraduate Student, ITM, Gwalior, India *Corresponding Author's email: shivamdinkar1997@gmail.com

India is one of the few countries with a dedicated national agroforestry policy, yet its full potential remains under-realized. Agroforestry offers a transformative pathway for achieving sustainable agriculture, climate resilience, rural livelihoods, and ecosystem restoration. This article explores how India can advance its agroforestry potential by integrating digital technologies, remote sensing, and participatory community-based approaches. A dual focus on technological innovation and grassroots engagement is key to scaling agroforestry for sustainable development, climate targets, and inclusive growth.

Introduction

India faces the complex challenge of feeding 1.4 billion people, ensuring farmer welfare, and restoring degraded landscapes—all under the looming pressure of climate change and resource scarcity. Agroforestry, the integration of trees with crops and/or livestock, emerges as a multifunctional land use system capable of addressing these intertwined challenges. Despite strong policy backing through the National Agroforestry Policy (2014) and Green India Mission, the spread of agroforestry in India remains uneven and limited in scale. Unlocking its potential requires convergence of technology, community participation, and policy innovation.

Agroforestry in the Indian Context Status and Scope

- 26 million ha under agroforestry (estimated), with potential to increase to 53 million ha
- Key regions: Indo-Gangetic Plains, Central India, Deccan Plateau, and Eastern states
- Common models: Boundary planting, Silvopasture, Agri-horti systems, Alley cropping Contribution to Development Goals

Development Goal	Agroforestry Contribution
Climate mitigation	Carbon sequestration (1.5–3.0 tC/ha/yr)
Livelihoods	Diversified income from timber, fodder, fruits, fuelwood
Soil health	Organic matter, erosion control, nutrient cycling
Water conservation	Improved infiltration, microclimate regulation
Biodiversity	Enhanced on-farm diversity and ecosystem services

AGRI MAGAZINE ISSN: 3048-8656 Page 138

Leveraging Technology for Scaling Agroforestry

Remote Sensing and GIS

- Land suitability mapping using satellite imagery (Sentinel-2, Landsat)
- Monitoring tree cover change on private and common lands
- Tracking biomass and carbon stocks via LiDAR, SAR, and multispectral data

Mobile and Digital Platforms

- Farmer advisory services through mobile apps (e.g., mKrishi, e-Choupal, Digital Green)
- Tree species recommendation engines based on soil-climate-crop compatibility
- Blockchain for traceability in agroforestry-based carbon and forest products

Decision Support Systems (DSS)

- Integration of weather forecasts, market data, and tree-crop interaction models
- Tools for species selection, land-use planning, and risk mitigation

Artificial Intelligence and Machine Learning

- Crop-tree interaction modelling
- Predictive analytics for pest/disease outbreaks
- Automation in tree inventory and carbon quantification

Community and Participatory Approaches

Farmer Producer Organizations (FPOs)

- Aggregating smallholders for collective access to inputs, finance, and markets
- Enabling value-chain development for agroforestry products (e.g., bamboo, medicinal plants, fruit trees)

Joint Forest Management (JFM) and Panchayats

- Integrating agroforestry into village micro-plans
- Convergence of MGNREGA for tree-based livelihoods and soil-water conservation

Indigenous Knowledge and Gender Inclusion

- Utilizing traditional tree-based systems (e.g., home gardens in Kerala, Baadi in Chhattisgarh)
- Empowering women in nursery raising, NTFP processing, and local governance

Participatory Research and Extension

- Farmer-led on-farm trials to adapt models locally
- Village-level knowledge hubs for capacity building and peer learning

Policy and Institutional Enablers

National Agroforestry Policy (NAP)

- Framework for inter-ministerial coordination
- Encourages states to create State Agroforestry Missions
- Promotes ease of harvesting and transit for farm-grown trees

Sub-Mission on Agroforestry (SMAF)

- Part of National Mission on Sustainable Agriculture (NMSA)
- Financial support for tree plantation, nurseries, and extension

Integration with Climate and Land Initiatives

- Nationally Determined Contributions (NDCs): Agroforestry for carbon sinks
- Bonn Challenge and UN Decade on Ecosystem Restoration
- Carbon markets and green credits (potential monetization of tree planting)

Challenges to Realization

Challenge	Description
Fragmented landholdings	Limits long-term tree investment
Lack of data	Tree biomass and survival monitoring at farm level
Slow policy implementation	Delayed harmonization across states
Market linkage gaps	Underdeveloped value chains for tree products
Skewed incentives	Crops still prioritized in subsidy and insurance frameworks

AGRI MAGAZINE ISSN: 3048-8656 Page 139

Roadmap for Action: Technology + Community Synergy Priority Actions:

- 1. Develop Agroforestry Digital Atlas
- State-wise maps of suitability, biomass, carbon potential
- 2. Strengthen Agroforestry Value Chains
- Promote processing, aggregation, and branding (e.g., neem oil, moringa powder)
- 3. Scale Farmer-Led Innovations
- Document and replicate indigenous agroforestry practices
- 4. Establish Agroforestry Incubation Hubs
- Link FPOs, startups, and researchers for co-innovation
- 5. Enable Climate Finance Access
- Prepare community-based carbon projects for voluntary carbon markets

Conclusion

India stands at a critical juncture where agroforestry can serve as a keystone strategy to meet its climate, livelihood, and restoration goals. Realizing this potential demands a synergistic approach—blending the precision and scalability of digital technology with the adaptability and inclusiveness of community participation. By aligning technological tools with grassroots action, India can lead the world in climate-smart, inclusive, and resilient land use systems, with agroforestry at the forefront of sustainable development.

References

- 1. Ministry of Agriculture & Farmers Welfare. (2014). National Agroforestry Policy.
- 2. ICRAF India (2020). Scaling Agroforestry for Sustainable Development.
- 3. FAO. (2021). Agroforestry for Climate Resilience in South Asia.
- 4. NRSC. (2022). Remote Sensing for Agroforestry Mapping in India.
- 5. CEEW & NRDC. (2023). *Unlocking Climate Finance for Agroforestry*.

AGRI MAGAZINE ISSN: 3048-8656 Page 140