

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 10 (October, 2025)

Available online at http://www.agrimagazine.in

**Open Comparison of Com

Molecular Approaches in Silkworm Improvement

*B. Sukumar¹, Nishismita Parida² and Amrit Mohapatra²

¹Undergraduate Student, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Chidambaram, Cuddalore-608002, India

²Institute of Agricultural Sciences, Siksha O Anusandhan- DU, Bhubaneswar, India *Corresponding Author's email: sukumarbalraj8@gmail.com

The silkworm (*Bombyx mori* L.) is the primary source of commercial silk production worldwide. Traditional breeding for silk yield, quality, disease resistance, and environmental adaptability has been effective but time-consuming and limited by phenotypic selection. Molecular approaches now complement classical breeding, allowing precise selection and faster development of superior silkworm strains. These modern tools focus on genetic characterization, marker-assisted selection, transgenics, and genome editing, accelerating improvement in productivity and silk quality.

Molecular Tools for Silkworm Improvement

1. Molecular Markers and Genetic Mapping

- SSR (Simple Sequence Repeats): Highly polymorphic and co-dominant; used for constructing linkage maps and identifying QTLs linked to silk traits.
- SNP (Single Nucleotide Polymorphism) Markers: Provide high-density genetic maps and enable marker-assisted selection (MAS).
- RAPD and AFLP Markers: Early tools for assessing genetic diversity among silkworm strains.
- Applications:
- ✓ Identification of silk yield-related QTLs.
- ✓ Marker-assisted selection for disease resistance (e.g., grasserie, flacherie).
- ✓ Genetic diversity analysis for conservation of indigenous strains.

2. Quantitative Trait Loci (QTL) Mapping

- QTL mapping identifies genomic regions associated with economically important traits such as:
- ✓ Cocoon weight and shell ratio www.agrimagazine.in
- ✓ Silk fiber length and strength
- ✓ Growth rate and fecundity
- QTL-assisted breeding enables selection for multiple traits simultaneously.

3. Genomics and Transcriptomics

- Whole-genome sequencing: The *Bombyx mori* genome has been sequenced, providing reference for functional genomics.
- Transcriptome analysis: RNA-Seq identifies genes expressed during silk gland development, larval growth, and immune response.
- Applications:
- ✓ Discovery of silk protein genes (*fibroin*, *sericin*) and regulatory elements.
- ✓ Understanding stress and disease response pathways.

4. Marker-Assisted Selection (MAS)

- MAS allows early and precise selection of superior silkworm lines based on linked markers.
- Used to improve:

AGRI MAGAZINE ISSN: 3048-8656 Page 130

- ✓ Silk productivity and fiber quality
- ✓ Disease resistance
- ✓ Thermo-tolerance for rearing under variable environmental conditions

5. Transgenic Silkworms

- Genetic engineering enables incorporation of foreign genes to enhance silk properties or produce recombinant proteins.
- Examples:
- ✓ Expression of spider silk genes to produce high-strength silk.
- ✓ Production of pharmaceutical proteins in silk glands for biopharming.

6. RNA Interference (RNAi) and Functional Genomics

- RNAi allows gene silencing to study gene function in silk production and immunity.
- Helps identify target genes for enhancing silk yield or disease resistance.

7. Genome Editing (CRISPR/Cas9)

- Precise modification of genes controlling:
- ✓ Silk fibroin and sericin composition
- ✓ Resistance to viral and bacterial pathogens
- ✓ Growth rate and metabolic efficiency
- CRISPR applications enable faster development of elite strains compared to conventional breeding.

Applications and Achievements

- Enhanced Silk Yield: Selection of fibroin and cocoon-weight QTLs increases productivity.
- Improved Silk Quality: Transgenic and genome-edited silkworms produce silk with higher tensile strength and elasticity.
- Disease Resistance: MAS and genome editing reduce losses due to viral (BmNPV) and bacterial infections.
- Biopharming: Silkworms as biofactories for recombinant therapeutic proteins and enzymes.

Challenges and Future Prospects

- High cost and technical expertise required for molecular breeding.
- Limited public acceptance of genetically modified silkworms.
- Need for integrated approaches combining molecular tools with conventional selection to maintain adaptability and ecological balance.
- Future directions:
- ✓ Multi-omics integration (genomics, transcriptomics, proteomics) for holistic strain improvement.
- ✓ Development of climate-resilient and nutritionally optimized silkworm strains.
- Expansion of biopharming applications using transgenic silkworms.

Conclusion

Molecular approaches are revolutionizing silkworm improvement by enabling precise, rapid, and multi-trait enhancement. By integrating marker-assisted selection, genomics, transgenics, RNAi, and genome editing, breeders can develop silkworm strains with superior silk quality, higher yield, and disease resistance. These innovations promise to strengthen the sericulture industry, improve farmer livelihoods, and expand silkworm-based biotechnology applications.

AGRI MAGAZINE ISSN: 3048-8656 Page 131