

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 10 (October, 2025)

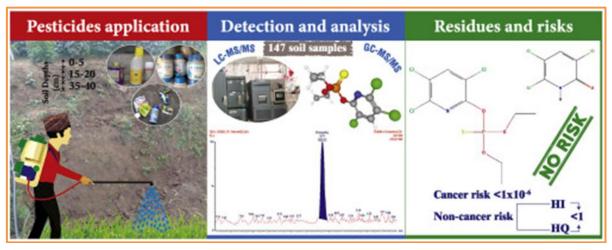
Available online at http://www.agrimagazine.in
[©] Agri Magazine, ISSN: 3048-8656

Impact of Pesticide Pollution on Soil Health and Residue Dynamics

*Halesh D S¹, Pooja V² and Sharanabasava³

¹Department of Soil Science and Agriculture Chemistry, University of Agricultural Sciences, Raichur, Karnataka, India

²Ph.D. Scholar, Department of Agricultural Extension, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka, India


³Ph.D. Scholar, Department of Soil Sciences, University of Agricultural Sciences, Raichur, Karnataka, India

*Corresponding Author's email: haleshdsshilpa4567@gmail.com

Chemical pesticides have been widely used in agriculture for decades to minimize crop losses and meet the increasing global demand for food. Approximately one-third of agricultural production relies on chemical pesticides (Zhang *et al.*, 2011). Studies suggest that if pesticide use were suddenly discontinued worldwide, crop losses could rise dramatically by about 78 per cent for fruits, 54 per cent for vegetables, and 32 per cent for grains (Cai, 2008). Pesticide production has grown substantially, increasing by around 11 per cent annually from 0.2 million tons in the 1950s to over 5 million tons by 2000 (Carvalho, 2017). By 2012, global pesticide application reached an estimated 3.8 million tons, valued at over 40 billion USD (FAO, 2020; Pimentel, 2009). However, this extensive use has raised serious health concerns, particularly in developing countries, where more than two million people face elevated health risks due to pesticide exposure (Hicks, 2019). The rate of pesticide application varies widely across regions, with Asia showing the highest use—ranging from 6.5 to 60 kg of insecticides per hectare (Carvalho, 2017).

Although pesticides contribute to improved food production and safety, their excessive and continuous use has led to significant soil contamination, posing serious environmental and health risks. The physical and chemical properties of soil greatly influence how pesticides behave, move, and persist in the environment (Lewis *et al.*, 2016). Acting as a major sink, soil absorbs most applied pesticides and their breakdown products, which can disrupt ecosystems and enter food chains. Over time, these chemicals may accumulate and be transferred to humans through bio-amplification (Zhang *et al.*, 2006; Alamdar *et al.*, 2014). Additionally, rainfall and irrigation can wash pesticides from agricultural soils into nearby water bodies, further contributing to water pollution and ecosystem degradation.

Pesticides can also be emitted into the atmosphere through volatilization (Sweetman et al., 2005), which adversely affect air (Bidleman and Leone, 2004) and surface water quality, Runoff and flooding are two major pathways of movement of pesticides that may lead to unintentional diffusion and non-target contamination (Wong et al., 2017) that can ultimately negatively affect human health. The concentration of pesticides tend to increase with soil depth (Zhang et al., 2006) and thus, the concentrations found in the bottom soil layer may increase underground water pollution. Different levels of pesticides were reported across the globe and have threatened humans and the environment (Houbraken et al., 2017). Along with analytical approaches, such as GC-MS and LC-MS, concentrations of pesticides are often estimated depending on their predicted environmental concentrations (PECs).

Farmers are frequently exposed to pesticide-contaminated soils through various routes, including skin contact, inhalation, and accidental ingestion (Li, 2018). The potential for humans to develop cancer and other health disorders from such exposure has been assessed using standardized models developed by the USEPA. Health risk evaluations commonly use indicators like the Hazard Quotient (HQ) and Hazard Index (HI), which rely on pesticide concentration levels (Pan *et al.*, 2018). Similarly, the environmental risk of pesticides is often estimated using their Predicted Environmental Concentrations (PECs) (Silva *et al.*, 2019). Increasing evidence from around the world shows that pesticide use in agriculture poses serious health risks to humans (Shelton *et al.*, 2014). Among these, dietary exposure to pesticide residues in food remains particularly concerning and is often considered beyond acceptable safety limits (Bhandari *et al.*, 2019).

Pesticide pollution is a significant environmental concern due to its potential to contaminate soil, water, and air, thereby impacting ecosystems and human health. The persistence and behavior of pesticides in soils vary widely depending on their chemical properties, soil characteristics, and environmental conditions. This essay explores the nature of pesticide pollution, the factors affecting pesticide residue times in different soil types, and the implications for environmental and human health.

Nature of Pesticide Pollution

Pesticides, including insecticides, herbicides, and fungicides, are used extensively in agriculture to control pests and diseases. While they help improve crop yields and food security, their application can lead to pollution when residues remain in the environment. These residues can persist in soils, affecting soil health, microbial communities, and plant growth. Moreover, they can leach into groundwater or run off into surface water bodies, causing broader ecological impacts.

Factors Affecting Pesticide Residue Time in Soil

The persistence of pesticide residues in soil, known as their half-life, is influenced by several factors:

1. Chemical Properties of Pesticides:

- ➤ **Solubility:** Water-soluble pesticides are more likely to leach into groundwater, reducing their persistence in the soil.
- **Volatility:** Highly volatile pesticides can evaporate, reducing their soil residue time.
- **Adsorption:** Pesticides that strongly adsorb to soil particles tend to persist longer.
- ➤ **Degradation:** Chemical and biological degradation processes break down pesticides. Chemical degradation involves hydrolysis, oxidation, and photolysis, while biological degradation involves microbial activity.

Types of Pesticides:

Pesticides are broadly classified into several categories based on their target pests: insecticides, herbicides, fungicides, and rodenticides. Each type of pesticide has distinct chemical properties, influencing its behavior in the environment. For instance,

organochlorine insecticides, such as DDT, are known for their high persistence, while organophosphates, like Malathion, degrade more rapidly.

2. Soil Characteristics:

- ➤ **Texture:** Soils with high clay content have greater adsorption capacity, leading to longer pesticide persistence. Sandy soils, with lower adsorption capacity, often exhibit shorter pesticide half-lives.
- ➤ Organic Matter Content: Organic matter enhances pesticide adsorption and microbial activity, which can either increase or decrease pesticide persistence depending on the balance of these factors.
- ▶ **pH:** Soil pH affects the chemical stability and microbial degradation of pesticides. For example, alkaline soils may accelerate the degradation of certain pesticides.
- ➤ Cation Exchange Capacity (CEC): CEC refers to the soil's ability to hold and exchange cations. Soils with high CEC can retain more pesticide molecules, reducing their availability for degradation and leading to longer residue times.
- ➤ Microbial Activity: Soil microorganisms play a crucial role in pesticide degradation. Soils with high microbial activity, such as those with adequate moisture and organic matter, typically show faster pesticide breakdown and shorter residue times.

3. Environmental Conditions:

- ➤ **Temperature:** Higher temperatures generally increase the rate of chemical and biological degradation of pesticides.
- ➤ **Moisture:** Adequate moisture supports microbial activity, promoting biodegradation. However, excessive moisture can lead to leaching.
- > Sunlight: Ultraviolet (UV) radiation can break down certain pesticides on soil surfaces through photodegradation.

Pesticide Residue Time in Different Soil Types

Different soil types exhibit varying capacities to retain and degrade pesticide residues. The following sections detail the behavior of pesticides in several common soil types:

- **1. Sandy Soils:** Sandy soils have low organic matter and clay content, resulting in low adsorption capacity. Consequently, pesticides in sandy soils are more prone to leaching into groundwater. The low adsorption and rapid drainage also mean that pesticides are less likely to persist for long periods. However, the low microbial activity in sandy soils can sometimes slow down biodegradation processes.
- **2. Clay Soils:** Clay soils have high adsorption capacity due to their fine texture and high surface area. Pesticides in clay soils tend to persist longer because they are tightly bound to soil particles. The high water-holding capacity of clay soils can promote microbial degradation, but the slower drainage can lead to anaerobic conditions, which may inhibit microbial activity and slow down pesticide breakdown.
- **3. Loamy Soils:** Loamy soils, which are a mixture of sand, silt, and clay, offer a balance of properties. They have moderate adsorption capacity and good drainage, supporting both chemical and microbial degradation of pesticides. The presence of organic matter in loamy soils further aids microbial activity, leading to effective degradation of pesticide residues.
- **4. Organic Soils**: Organic soils, rich in organic matter, have high adsorption capacity and support robust microbial communities. These characteristics often result in efficient biodegradation of pesticides, reducing their persistence. However, the complex interactions between organic matter and pesticides can sometimes lead to the formation of bound residues that are less bioavailable and persistent.

Environmental and Human Health Implications

The long-term presence of pesticide residues in soil poses serious risks to both the environment and human health. These persistent chemicals can disturb soil microbial activity, decrease soil fertility, and contaminate both surface and groundwater sources, threatening aquatic life and water quality. Humans may be exposed to these residues through the intake of polluted food and water, which can lead to severe health issues, including cancer,

hormonal imbalances, and nervous system disorders. Safeguarding soil and water from pesticide contamination requires implementing sustainable farming practices such as Integrated Pest Management (IPM), which reduces chemical use and encourages eco-friendly pest control alternatives.

Case Studies

Several studies have highlighted the varying pesticide residue times in different soil types:

- **1.** Atrazine in Sandy and Clay Soils: Atrazine, a common herbicide, has been found to degrade faster in sandy soils due to rapid leaching, while it persists longer in clay soils due to strong adsorption.
- **2. DDT in Organic-Rich Soils:** DDT residues have been detected in organic-rich soils decades after application, indicating the high persistence of organochlorine pesticides in soils with high organic matter content.
- **3. Glyphosate in Loam Soils:** Glyphosate, a widely used herbicide, exhibits moderate persistence in loam soils, with degradation rates influenced by microbial activity and organic matter content.

Conclusion

Pesticide pollution and the persistence of pesticide residues in soil are influenced by a complex interplay of chemical properties, soil characteristics, and environmental conditions. Understanding these factors is crucial for managing pesticide use and mitigating their environmental and health impacts. Sustainable agricultural practices and ongoing research into pesticide behavior in soils are essential for ensuring the long-term health of ecosystems and human populations.

References

- 1. Alamdar, A., Syed, J. H., Malik, R. N., Katsoyiannis, A., Liu, J., Li, J., 2014, Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange. *Sci. Total Environ.*, 470–471, pp. 733-741.
- 2. Bhandari, G., Zomer, P., Atreya, K., Mol, H. G. J., Yang, X., Geissen, V., 2019, Pesticide residues in Nepalese vegetables and potential health risks. *Environ. Res.*, 172, pp. 511-521.
- 3. Bidleman, T. F., Leone, A. D., 2004, Soil–air exchange of organochlorine pesticides in the Southern United States. *Environ. Pollut.*, 128, pp. 49-57.
- 4. Cai, D. W., 2008, Understand the role of chemical pesticides and prevent misuses of pesticides. *Bull. Agric. Sci. Technol.*, 1, pp. 36-38.
- 5. Carvalho, F. P., 2017, Pesticides, environment, and food safety. *Food Energy Security*, 6, pp. 48-60.
- 6. FAO, Agricultural pollution: pesticides. *Retrieved on: 12 January*, 2020, pp. 6.
- 7. Hicks, B., 2019, Agricultural pesticides and human health, department of earth sciences, Montana state university, USA.
- 8. Houbraken, M., Habimana, V., Senaeve, D., Lopez-Davila, E., Spanoghe, P., 2017, Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda. *Sci. Total Environ.*, 576, pp. 888-894.
- 9. Lewis, S. E., Silburn, D. M., Kookana, R. S., Shaw, M., 2016, Pesticide behavior, fate, and effects in the tropics: an overview of the current state of knowledge. *J. Agric. Food Chem.*, 64, pp. 3917-3924.
- 10. Li, Z., 2018, The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures. *Sci. Total Environ.*, 639, pp. 438-456.
- 11. Pan, L., Sun, J., Li, Z., Zhan, Y., Xu, S., Zhu, L., 2018, Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment. *Environ. Sci. Pollut. Res. Int.*, 25, pp. 4-11.

- 12. Pesticide residues in European agricultural soils a hidden reality unfolded. *Sci. Total Environ.*, 653, pp. 1532-1545.
- 13. Shelton, J. F., Geraghty, E. M., Tancredi, D. J., Delwiche, L. D., Schmidt, R. J., Ritz, B., 2014, Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the CHARGE study. *Environ. Health Perspect.*, 122, pp. 1103-1109.
- 14. Silva, V., Mol, H. G. J., Zomer, P., Tienstra, V., Ritsema, C. J., Geissen, V., 2019, Pesticide residues in European agricultural soils—A hidden reality unfolded. *Science of the Total Environment*, 653, pp.1532-1545.
- 15. Sweetman, A. J. Valle, M. D., Prevedouros, K., Jones, K. C., 2005, The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data. *Chemosphere*, 60, pp. 959-972.
- 16. Wong, H. L., Garthwaite, D. G. Ramwell, C. T. Brown, C. D., 2017, How does exposure to pesticides vary in space and time for residents living near to treated orchards?. *Environ. Sci. Pollut. Res. Int.*, 24, pp. 26444-26461.
- 17. Zhang, H. B., Luo, Y. M., Zhao, Q. G., Wong, M. G., Zhang, G. L., 2006, Residues of organochlorine pesticides in Hong Kong soils. *Chemosphere*, 63, 633-641.
- 18. Zhang, W, F., Jiang, J. Ou., 2011, Global pesticide consumption and pollution: with China as a focus. Int. Acad. Ecol. Environ. Sci., 1, pp. 125-144.