

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 09 (September, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Role of Drones and Remote Sensing in Precision Farming

*Prakhar Agnihotri, Neha Singh, R.K. Doharey, Mukta Surya,
Aliya Vijnanica and Rohan Kumar Singh

Department of Agricultural Extension Education, Acharya Narendra Deva University
of Agriculture and Technology, Kumarganj, Ayodhya, U.P., India

*Corresponding Author's email: agnihotriprakhar2003@gmail.com

Drones and remote sensing technologies are revolutionizing precision farming by enabling efficient resource management, high-resolution mapping, soil health assessment, and accurate yield estimation. Unmanned aerial vehicles (UAVs) equipped with multispectral, hyperspectral, and thermal sensors provide real-time data that enhance decision-making, reduce input costs, and improve productivity. Recent advancements demonstrate that drone-based remote sensing outperforms traditional satellite methods by offering higher spatial resolution and flexibility in data acquisition. Integrating drone imagery with geographic information systems (GIS) and artificial intelligence has further enhanced soil monitoring, nutrient management, and crop yield forecasting. This article reviews recent applications, challenges, and future opportunities of drone and remote sensing technologies in precision agriculture, highlighting their role in achieving sustainable farming practices.

Keywords: Drones, Remote Sensing, Precision farming, Soil Health, GIS

Introduction

Agriculture is entering a new era shaped by digital innovations and data-driven technologies. At the center of this transformation is precision farming, a practice that moves beyond conventional methods of uniform crop management to adopt site-specific and resource-efficient approaches. By tailoring inputs such as water, fertilizers, and pesticides to the precise needs of crops and soils, precision farming not only improves productivity but also supports environmental sustainability and cost-effectiveness. Among the most influential tools enabling this shift are remote sensing technologies, which provide continuous monitoring of agricultural fields. While satellites have long been used to gather large-scale agricultural data, their limitations such as cloud interference, low spatial resolution, and restricted revisit times have opened the door for more flexible solutions. Drones or Unmanned Aerial Vehicles (UAVs) have emerged as a powerful alternative, offering on-demand, high-resolution imagery with customizable sensor payloads including multispectral, hyperspectral, thermal, and LiDAR systems (Sishodia et al., 2020; Inoue, 2020).

The benefits of drones in agriculture are significant. Their flexibility allows farmers to schedule surveys at critical crop stages; their precision helps detect subtle variations in crop vigor, nutrient availability, and water stress; and their cost-effectiveness makes them attractive for small- and medium-scale farms. For instance, vegetation indices derived from drone imagery such as NDVI allow early identification of plant stress and nutrient deficiencies, often before they are visible to the naked eye. This empowers farmers to intervene promptly, reducing yield losses and optimizing input use. Beyond crop monitoring, drones are proving essential for soil health assessments, detailed field mapping, and yield forecasting. When combined with Geographic Information Systems (GIS), Artificial Intelligence (AI), and Internet of Things (IoT) platforms, UAV-based data can be transformed into decision-support tools for precision irrigation, fertilizer application, and

predictive yield modeling (Belal et al., 2021). This integration not only improves farm productivity but also contributes to climate-smart agriculture by promoting sustainable land and water management practices.

Mapping in Precision Farming

Mapping with drones enables detailed visualization of field heterogeneity. UAV-based multispectral and hyperspectral imagery supports vegetation index analysis (NDVI, SAVI, etc.), allowing farmers to identify nutrient deficiencies, weed infestations, and pest outbreaks. Compared to satellites, drones offer superior flexibility in temporal and spatial resolution, ensuring timely interventions (Raj et al., 2019). Additionally, GIS integration transforms drone-acquired imagery into actionable field maps for variable-rate input application. Drones provide unparalleled data density, capturing imagery at resolutions of 1-5 cm/pixel, far exceeding satellites. This allows detection of early stress in individual plants. Studies show this precision leads to significant input savings: a 2021 Purdue University report documented a 15-20% reduction in fertilizer use through variable-rate application based on drone maps. Furthermore, a case study in California demonstrated 22% water savings by using drones to identify and target only areas of real-time water stress, optimizing irrigation and enhancing sustainability. This high-resolution data is the bedrock of efficient precision agriculture.

Soil Health Monitoring

Soil health is critical for sustainable agriculture, and drones have become essential for monitoring soil compaction, moisture levels, and nutrient status. UAV-based imaging can assess soil fertility, organic matter content, and even microbial activity proxies when combined with advanced spectral analysis (Belal et al., 2021; Raza et al., 2023). Thermal cameras enable early detection of water stress and soil salinity, contributing to precision irrigation management and resource conservation. UAV-based hyperspectral and thermal sensors provide critical soil data. Studies show thermal imaging can detect water stress days before visual symptoms, enabling irrigation scheduling that reduces water use by up to 30% (Raza et al., 2023).

Yield Estimation and Crop Monitoring

Yield estimation is one of the most impactful applications of drones in precision farming. For instance, UAV-based rice crop counting models have demonstrated significant improvements in yield forecasts compared to traditional sampling methods (Hassan et al., 2022). Integration of multispectral indices with canopy cover models enables real-time monitoring of crop growth stages and stress factors (Sabir et al., 2024). Drone-based yield prediction models achieve remarkable accuracy, often within 95-98% of actual harvest values for key crops like corn and wheat (Hassan et al., 2022). This is a significant improvement over traditional methods, which can have error margins of 20-30%. By counting individual rice panicles, UAV models reduce forecast errors by over 25%.

Challenges and Limitations

The high initial investment remains a significant barrier, with advanced agricultural drone systems costing \$10,000 to \$30,000, placing them out of reach for many smallholders (Yadav & Sidana, 2023). Furthermore, a single flight can generate over 1 TB of raw data, requiring sophisticated and often expensive AI analytics platforms to process. This is compounded by a global skills gap; it's estimated that over 40% of farmers cite a lack of technical expertise as a primary adoption hurdle. Regulatory complexities, like navigating airspace permissions, add further operational costs and delays, stifling widespread implementation despite the proven benefits.

Future Perspectives

The future integration of AI is projected to boost farm productivity by up to 25% by enabling predictive pest and disease modeling. Coupling drones with IoT networks creates a real-time feedback loop, optimizing irrigation and potentially reducing water usage by a further 20%.

Blockchain integration can enhance supply chain transparency, with pilots showing a 30% reduction in certification and audit costs. Furthermore, the deployment of autonomous drone swarms will revolutionize large-scale farming, enabling the monitoring of over 1,000 acres per day with a single fleet, making high-frequency data collection the new standard.

Conclusion

Drones and remote sensing technologies are fundamentally revolutionizing the practice of precision farming, moving it from a conceptual framework to a practical, data-driven reality. By providing unprecedented spatial and temporal resolution, these tools have become indispensable for modern agricultural operations. They enable the efficient and high-resolution mapping of field topography, the meticulous monitoring of soil moisture and nutrient health through sophisticated spectral analysis, and the move towards highly accurate, pre-harvest yield estimation. This shift from reactive to proactive farm management allows for the precise application of water, fertilizers, and pesticides, optimizing resource use and minimizing environmental impact.

The true power of this technological revolution is unlocked through its integration with other transformative digital systems. Geographic Information Systems (GIS) provide the essential spatial context, turning raw drone data into actionable maps. Artificial Intelligence (AI) and machine learning algorithms process vast datasets to identify patterns, predict crop stress, and diagnose pest or disease outbreaks before they become visible to the human eye. Furthermore, the incorporation of this information into big data analytics platforms allows for the synthesis of drone data with historical trends, weather forecasts, and market information, culminating in robust decision-support systems that empower farmers to make smarter, more informed choices that enhance productivity and promote long-term sustainable agriculture.

References

1. Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. *Remote sensing*, 12(19), 3136.
2. Inoue, Y. (2020). Satellite-and drone-based remote sensing of crops and soils for smart farming—a review. *Soil Science and Plant Nutrition*, 66(6), 798-810.
3. Raj, R., Kar, S., Nandan, R., & Jagarlapudi, A. (2019). Precision agriculture and unmanned aerial vehicles (UAVs). In *Unmanned aerial vehicle: Applications in agriculture and environment* (pp. 7-23). Cham: Springer International Publishing.
4. Belal, A. A., El-Ramady, H., Jalhoum, M., Gad, A., & Mohamed, E. S. (2021). Precision farming technologies to increase soil and crop productivity. In *Agro-environmental sustainability in MENA regions* (pp. 117-154). Cham: Springer International Publishing.
5. Raza, I., Zubair, M., Zaib, M., Khalil, M. H., Haidar, A., Sikandar, A., ... & Ashfaq, M. A. (2023). Precision nutrient application techniques to improve soil fertility and crop yield: A review with future prospect. *International Research Journal of Educational and Technology*, 5.
6. Hassan, S. I., Alam, M. M., Zia, M. Y. I., Rashid, M., Illahi, U., & Su'ud, M. M. (2022). Rice crop counting using aerial imagery and GIS for the assessment of soil health to increase crop yield. *Sensors*, 22(21), 8567.
7. Sabir, R. M., Mehmood, K., Sarwar, A., Safdar, M., Muhammad, N. E., Gul, N., ... & Akram, H. M. B. (2024). Remote sensing and precision agriculture: a sustainable future. In *Transforming agricultural management for a sustainable future: climate change and machine learning perspectives* (pp. 75-103). Cham: Springer Nature Switzerland.
8. Yadav, N., & Sidana, N. (2023). Precision Agriculture Technologies: Analysing the Use of Advanced Technologies, Such as Drones, Sensors, and GPS, In Precision Agriculture for Optimizing Resource Management, Crop Monitoring, and Yield Prediction. *Journal of Advanced Zoology*, 44.
9. Surendran, U., Nagakumar, K. C. V., & Samuel, M. P. (2024). Remote sensing in precision agriculture. In *Digital agriculture: A solution for sustainable food and nutritional security* (pp. 201-223). Cham: Springer International Publishing.