

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)

Volume: 02, Issue: 09 (September, 2025)

Available online at <http://www.agrimagazine.in>

© Agri Magazine, ISSN: 3048-8656

Plant-Based Protection: Exploring Edible Vaccines

*Khanin Pathak

Assistant Professor, Department of Biochemistry, SCS College of Agriculture,
Chapar, Dhubri-783376, India

*Corresponding Author's email: khanin.pathak@aau.ac.in

Edible vaccines are genetically modified (GM) plants that produce pathogen-specific antigenic proteins in edible components. Without the use of injections, these proteins help the body's defenses identify and combat the pathogen. The goal of edible vaccines is to lessen reliance on syringes, cold chains, and skilled medical personnel, particularly in environments with limited resources.

Steps and processes of making edible vaccines

1. Selecting an appropriate antigen: An antigen is a pathogen-derived molecule to which the immune system may detect and respond. The gene from a pathogen that encodes this antigen is first found by scientists. It should be: Safe (does not spread infection), able to generate immunity in plant cells and stable. For instance, HBsAg, the Hepatitis B surface antigen, is frequently utilized.

2. Generating a plant expression vector via gene cloning: The antigen gene is cloned into a plant expression vector, a specifically made DNA construct that guarantees the plant can read and express the gene. The vector consists of protein that helps to activate the gene in the plant, such as CaMV 35S. The gene for the antigen A selective marker to detect altered cells, such as antibiotic resistance. The plant uses this vector as a kind of instruction manual to produce the antigen protein.

3. Transfer of genes to plant cells: Plant cells are injected with the vector using one of two methods: Transformation mediated by Agrobacterium tumefaciens is a naturally occurring soil bacterium that gives plants their DNA. Useful for dicots (such as potatoes and tomatoes). Gene Gun (Biolistic approach): tiny gold or tungsten particles coated with DNA are injected into plant cells.

4. Selection and regeneration: The new gene is only taken up by a small percentage of plant cells. Thus, the cells are grown on a medium that is selective (such as one that contains antibiotics) by the scientists. The only cells that will endure are those that have undergone genetic modification and express the marker gene. Tissue culture methods are used to regenerate these cells into whole transgenic plants.

5. Antigen expression in edible tissues: The antigenic protein is produced in the transgenic plant by transcription and translation of the antigen gene. The edible portions—fruits, leaves, or roots—are where this protein builds up. To deliver the vaccine, a tomato plant, for instance, might express the antigen in its fruits, which can then be consumed raw.

6. Tests for immunity researchers confirm to: the antigen's existence (by PCR, Western blot, or ELISA) the antigen's durability in plant tissues. its capacity to elicit an immunological response in humans or animal models.

7. Oral administration and immune response: When a person consumes the edible vaccination, either raw or barely cooked: The gut is exposed to the antigen, particularly the small intestine's Peyer's patches. The antigen is taken up and delivered to immune cells (macrophages and dendritic cells) by M cells in the intestinal lining. This sets off: IgA antibody production at mucosal surfaces is known as mucosal immunity. IgG antibody

production in the bloodstream is a component of systemic immunity. The individual is thus immunized without receiving an injection.

Example of edible vaccine

Target Disease	Antigen Used	Plant Host	Status
Hepatitis B	Hepatitis B surface antigen (HBsAg)	Potato, Tomato, Banana	Human trials (Phase I)
Cholera	Cholera toxin B subunit (CTB)	Potato, Tomato, Rice	Animal and early human studies
Norwalk Virus	Norwalk virus capsid protein	Potato	Human clinical trial successful
Rabies	Rabies glycoprotein	Lettuce, Spinach	Animal trials
Rotavirus	VP6 protein	Banana	Preclinical studies
HIV (AIDS)	gp41, p24 antigens	Tomato, Lettuce	Research phase
Malaria	Merozoite surface protein (MSP)	Alfalfa, Tobacco, Rice	Research phase
Measles	Hemagglutinin protein	Tobacco, Carrot	Experimental

Conclusion

Edible vaccinations are a ground-breaking development at the crossroads of biotechnology, agriculture, and public health. Plants are used as biofactories to produce antigenic proteins, providing a needle-free, low-cost, and scalable alternative to standard immunization procedures. Edible vaccines have the potential to transform global immunization methods, cut healthcare delivery costs, and do away with the requirement for cold chains, which is especially advantageous for developing nations. Their viability is being improved by ongoing study, despite technical and regulatory obstacles such as dosage consistency, public acceptability of GMOs, and antigen stability. Edible vaccines have the potential to be effective instruments for the control of infectious illnesses with the right validation, particularly in areas with limited resources or distant locations.

References

1. Daniell, H., Nair, S. K. and Esmaeili, N. (2021). Plant-made vaccines and therapeutics. *Science Advances*, 7(22): eabe9446.
2. Kwon, K. C. and Daniell, H. (2020). Low-cost oral delivery of protein drugs bioencapsulated in plant cells. *Molecular Therapy*, 28(1): 211–228.
3. Tacket, C. O., Mason, H. S., Losonsky, G., Clements, J. D., Levine, M. M. and Arntzen, C. J. (2000). Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. *Nature Medicine*, 6(9): 1074–1078.
4. Thanavala, Y., Mahoney, M., Pal, S., Scott, A., Richter, L., Natarajan, N. and Arntzen, C. J. (2005). Immunogenicity of transgenic plant-derived hepatitis B surface antigen. *Trends in Immunology*, 26(10): 517–523.