

# AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 08 (August, 2025)

Available online at http://www.agrimagazine.in 
<sup>©</sup>Agri Magazine, ISSN: 3048-8656

# Advances in Production Technology of Neem (Azadirachta indica): A Review

\*Dr. Alok Kumar, Dr. Gitam Singh, Dr. Rohan Sharma and Mr. Kailash Parihar Madhav University, Abu Road, Pindwara, Sirohi, Rajasthan-307026, India \*Corresponding Author's email: <a href="mailto:csaalokhorticulture@gmail.com">csaalokhorticulture@gmail.com</a>

(Azadirachta indica.), Teem popularly known as the "Indian lilac," is one of the most versatile multipurpose tree species of the tropics. It has significant importance in forestry, agriculture, medicine, and industry due to its fast growth, drought tolerance, and phytochemical profile, particularly azadirachtin. Over the decades, neem has been promoted social forestry, agroforestry, and



wasteland development programs in India and abroad. This review synthesizes information on the production technology of neem, including propagation, nursery management, planting, nutrient and water management, pest and disease control, and harvesting practices. Recent research on seed viability, vegetative propagation, and biotechnology interventions is also highlighted. The paper aims to provide a comprehensive understanding of neem production technology for sustainable utilization in agroforestry and commercial plantation programs.

**Keywords**: Neem, *Azadirachta indica*, propagation, nursery management, agroforestry, plantation technology

#### Introduction

Neem (*Azadirachta indica*), belonging to the family Meliaceae, is one of the most versatile multipurpose tree species of the tropics. It is indigenous to the Indian subcontinent and is now widely distributed across Asia, Africa, and parts of Latin America due to its adaptability, fast growth, and socio-economic importance. Commonly known as the "Indian lilac" or "village pharmacy," neem has been revered in Ayurveda, Siddha, and Unani systems of medicine for centuries, and its utility continues to expand in modern agriculture, medicine, and industry. Neem is an evergreen tree that thrives under semi-arid to tropical conditions, tolerating poor soils, high temperatures, and prolonged droughts. Its resilience makes it a suitable species for afforestation, agroforestry, and wasteland development. Beyond its ecological role, neem has significant economic and medicinal importance. In agriculture, neem plays a vital role in sustainable pest management and nutrient recycling. Neem seed kernel extract and neem oil are widely used as natural insecticides, nematicides, and fungicides, while neem cake is applied as an organic fertilizer that improves soil fertility and suppresses soil-borne pathogens. Neem-coated urea, promoted by the Government of India, is a landmark innovation to reduce nitrogen losses and enhance fertilizer-use efficiency.

Medicinally, neem is utilized for treating skin disorders, diabetes, dental diseases, malaria, and inflammatory conditions. Modern pharmacological studies confirm its potential as an anticancer, antidiabetic, antiviral, and immunomodulatory agent, validating traditional claims. The tree is also integrated into cosmetic and pharmaceutical industries, where neembased formulations are widely commercialized.

# **Climate Requirements**

Neem grows best in **tropical and subtropical climates**. Optimal temperature: **21–32**°C (70–90°F). Can tolerate **high temperatures up to 50**°C, but frost can damage young plants. Rainfall: **450–1200 mm annually**. Excess waterlogging should be avoided.

# **Soil Requirements**

Thrives in **sandy**, **loamy**, **or clay soils**. Well-drained soils are essential to prevent root rot. pH range: **6.2–7.0** is ideal, but it tolerates slightly acidic to slightly alkaline soils. Can grow in **poor and degraded soils**, making it ideal for afforestation.

# **Propagation Methods**

#### a) By Seeds

Neem seeds are **best sown fresh** (within 2–3 weeks of collection). Seed treatment: Soak in water for 24 hours to improve germination. Sowing: Sow seeds 1–2 cm deep in nursery beds or pots. germination time: 2–3 weeks. Seedlings are ready for transplanting in 3–4 months.

#### b) By Cuttings

- ➤ Semi-hardwood cuttings of 30–40 cm can root in mist chambers or sand beds.
- Less common than seed propagation.





# **Planting**

- > Spacing: 3–5 m between trees for timber, 2–3 m for medicinal or small-scale planting.
- ➤ **Planting time:** Onset of monsoon is ideal.
- $\triangleright$  Dig a pit of 45 cm  $\times$  45 cm  $\times$  45 cm.
- ➤ Mix **topsoil** + **compost** before planting.
- Water immediately after planting.

# Watering and Care

- Young plants need **frequent watering** until established.
- Mature trees are **drought-tolerant** and require little irrigation.
- Mulching helps retain soil moisture and control weeds.
- ➤ Prune to remove dead or diseased branches and improve canopy structure.

# **Fertilization**

- Neem requires **low fertility soils**, but for faster growth:
- Apply **compost or farmyard manure** during planting.
- Nitrogen-based fertilizers can be applied in **early growth stage**.

#### **Pest and Disease Management**

- ➤ Neem is generally **resistant to pests and diseases**.
- Occasional attacks: shoot borers, leaf miners.

Neem oil extracts can be used as **natural pesticide**, creating a self-sustaining cycle.

# **Medicinal Properties of Neem**

Neem is often called the "Village Pharmacy" in India because almost every part of the tree leaves, bark, flowers, fruits, seeds, and oil—possesses medicinal value. The therapeutic importance of neem is primarily attributed to its diverse group of bioactive compounds such as azadirachtin, nimbolide, nimbin, nimbidin, gedunin, and quercetin. These confer antimicrobial, anti-inflammatory, and immunomodulatory properties.

#### Leaves

- ➤ Used in Ayurvedic and Unani medicine as an antibacterial, antifungal, and antiviral agent.
- > Decoctions are used for treating skin disorders like eczema, ringworm, and psoriasis.
- ➤ Rich in antioxidants (flavonoids, polyphenols) that help in detoxification and liver protection.

#### **Bark and Gum**

- Neem bark contains tannins and polysaccharides with anti-inflammatory effects.
- ➤ Used traditionally for malaria, fever, and intestinal ulcers.
- ➤ Neem gum acts as a demulcent in treating gastrointestinal problems.

#### **Flowers**

- 1 Neem flowers are used as digestive stimulants and in managing anorexia and intestinal worms.
- 2 They also have mild antipyretic (fever-reducing) properties.

#### **Fruits and Seeds**

- The seed kernel yields **neem oil**, a potent source of azadirachtin.
- ➤ Used in traditional medicine for **leprosy**, **diabetes**, **and rheumatism**.
- ➤ Neem seed extracts exhibit **contraceptive and antifertility effects**, investigated for population control programs.

#### **Neem Oil**

- ➤ Widely used for **dermatological applications** (sores, acne, dandruff, and wound healing).
- > Demonstrates **antiviral and antibacterial** activity.
- Also employed in **oral health care**—toothpastes and mouth rinses containing neem reduce dental plaque and gingivitis.

## **Modern Pharmacological Evidence**

- **Anticancer:** Nimbolide and gedunin induce apoptosis in cancer cells.
- ➤ Antidiabetic: Neem leaf extracts reduce blood glucose levels and improve insulin sensitivity.
- **Immunomodulatory:** Stimulates both cell-mediated and humoral immune responses.
- Antimalarial: Neem limonoids show activity against *Plasmodium falciparum*
- ➤ **Medicinal properties**: Antibacterial, antifungal, antiviral, anti-inflammatory compounds.
- > Agricultural uses: Neem oil and cake as eco-friendly pesticides and organic fertilizers.
- ➤ Industrial applications: Use in cosmetics, pharmaceuticals, and biopesticide formulations.
- **Environmental role**: Drought resistance, soil conservation, carbon sequestration.

Despite its importance, large-scale plantation efforts have often faced constraints in seed viability, nursery practices, and management under diverse agro-climatic conditions. A systematic understanding of neem production technology is essential for sustainable utilization.

# **Propagation Technology**

# **Seed Propagation**

Neem seeds are **recalcitrant**, losing viability within 2–4 weeks after extraction. Fresh seeds with depulped fruits show 80–90% germination. Pre-sowing treatments: soaking in water for 12 h or treating with GA<sub>3</sub> (200 ppm) improves germination. Seeds should be sown directly in polythene bags ( $20 \times 10$  cm) with a mixture of sand soil FYM (1:1:1).

#### **Vegetative Propagation**

Stem cuttings treated with IBA (2000–4000 ppm) show moderate rooting success. Grafting and budding techniques allow true-to-type multiplication of superior genotypes. Micropropagation via tissue culture has shown potential for large-scale production of elite clones.



# **Nursery and Plantation Management**

# **Nursery Practices**

- 1. Semi-shaded nurseries are preferred.
- 2. Watering: light but frequent in the first month, gradually reduced.
- 3. Seedlings are ready for field planting at 3–4 months when they reach 30–40 cm in height.



#### **Site Selection & Planting**

- 1. Best suited to semi-arid and tropical climates with 400–1200 mm rainfall.
- 2. Can tolerate poor soils, including saline and alkaline soils.
- 3. Pits of  $45 \times 45 \times 45$  cm filled with FYM and soil are recommended.
- 4. Spacing:  $3 \times 3$  m for block plantations,  $5 \times 5$  m for agroforestry systems.

# **Nutrient and Water Management**

- 1. Neem generally thrives without fertilizers, but degraded soils respond to FYM (5–10 kg/pit) and low levels of NPK (50:25:25 g/plant/year).
- 2. Irrigation is required only during establishment (first 2 years). Once established, neem is highly drought tolerant.

# **Pest and Disease Management**

- 1. Seedling blight (*Alternaria*, *Fusarium*) can be managed with seed treatment using carbendazim or *Trichoderma* formulations.
- 2. Defoliators and borers are minor problems; handpicking and neem oil sprays are effective.
- 3. Overall, neem is relatively pest-free compared to other multipurpose trees.

# **Harvesting and Yield**

Neem trees generally begin fruiting after 3–5 years, with economic yields obtained from the 8th–10th year onwards. Mature trees produce 20–50 kg of fruits annually, depending on age, site, and management. Fruits are harvested during May–July by hand-picking or shaking branches, after which seeds are immediately depulped, washed, and shade-dried. Since neem seeds are recalcitrant, they must be processed quickly for oil extraction or sown fresh in nurseries to maintain viability

# **Advances in Production Technology**

Recent decades have witnessed significant progress in the propagation and cultivation techniques of neem, aimed at overcoming traditional limitations such as short seed viability, variable seedling quality, and inconsistent yields.

#### > Clonal Propagation and Orchards

Establishment of clonal seed orchards using grafting and budding ensures the multiplication of elite genotypes with superior growth and high azadirachtin content's Vegetative propagation methods such as softwood grafting, air layering, and stem cuttings with IBA treatments have been refined to produce uniform planting stock.

#### > Tissue Culture and Micropropagation

In vitro propagation using nodal explants and somatic embryogenesis has shown promise for mass multiplication. Micropropagation ensures true-to-type clones and facilitates large-scale production of disease-free seedlings. Advances in cryopreservation are being explored to address the issue of neem's recalcitrant seed storage.

#### > Seed Handling and Nursery Innovations

Improved methods for depumping, drying, and short-term storage of seeds have extended viability to 2–3 months. Use of root trainers, polybags, and enriched potting mixtures enhances seedling Vigor and survival. Seed priming with GA<sub>3</sub> or microbial inoculants accelerates germination and early growth.

### > Soil, Nutrient, and Water Management

Research indicates neem responds well to FYM incorporation (5–10 kg/pit) and low-input NPK supplementation in degraded soils. Early-stage irrigation scheduling has been optimized to improve establishment in arid zones, after which neem thrives under rainfed conditions.

#### **Medicinal Advantages**

- ➤ Antibacterial & Antiviral: Neem leaves, bark, and oil fight bacterial, viral, and fungal infections.
- ➤ Anti-inflammatory: Reduces inflammation; used in treating skin disorders like eczema and psoriasis.
- **Blood purification:** Consuming neem in small amounts can help detoxify the blood.
- > **Dental health:** Neem twigs are used as natural toothbrushes to prevent cavities and gum disease.
- ➤ **Diabetes management:** Some compounds in neem help regulate blood sugar levels.

# **Agricultural Advantages**

- ➤ Natural pesticide: Neem oil and seed extracts repel insects and pests without harmful chemicals.
- ➤ **Soil improvement:** Neem cake (residue after oil extraction) acts as an organic fertilizer, enriching soil nitrogen.
- **Pest control synergy:** Safe for beneficial insects while targeting harmful pests.

# **Environmental Advantages**

- ➤ Air purification: Neem trees absorb pollutants and improve air quality.
- **Soil conservation:** Deep roots prevent erosion and improve groundwater retention.

#### **Conclusion**

Neem (*Azadirachta indica* A. Juss.) has emerged as one of the most significant multipurpose tree species of tropical and semi-arid regions, providing ecological stability, economic benefits, and medicinal value. Its ability to withstand harsh climatic conditions, restore degraded lands, and offer a wide range of bioactive compounds has earned it the reputation of a "miracle tree." However, the full potential of neem can only be realized through the adoption of scientifically sound production technologies. This review highlights that neem production has advanced far beyond traditional seed-based propagation. Innovations such as clonal seed orchards, grafting, tissue culture, and micropropagation are ensuring the availability of uniform, true-to-type, and high-azadirachtin genotypes. Improved nursery practices, including the use of root trainers, soil amendments, and seed priming techniques, have enhanced seedling vigor and survival rates.

#### References

- 1. Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Bandyopadhyay, U. (2002). Biological activities and medicinal properties of neem (*Azadirachta indica*). *Current Science*, 82(11), 1336–1345.
- 2. National Research Council. (1992). *Neem: A tree for solving global problems*. National Academies Press.
- 3. Schmutterer, H. (1995). The neem tree: Source of unique natural products for integrated pest management, medicine, industry, and other purposes. VCH Publishers.
- 4. Singh, R. P., & Saxena, R. C. (2004). Azadirachtin: A natural pesticide from neem tree. *Current Science*, 86(9), 1136–1142.
- 5. Tewari, D. N. (1992). *Monograph on neem (Azadirachta indica A. Juss)*. International Book Distributors.
- 6. Subbalakshmi Lokesh, M., & Prakash, H. S. (2019). Advances in neem biotechnology: Tissue culture and genetic improvement. *Indian Journal of Plant Sciences*, 9(1), 45–52.
- 7. ICAR-CFRI. (2018). Agroforestry technologies for semi-arid tropics: Neem plantations. Central Forestry Research Institute, India.
- 8. Govindachari, T. R. (1992). Chemical and biological investigations on neem (Azadirachta indica A. Juss.). *Current Science*, *63*(3), 117–122.
- 9. Koul, O., & Wahab, S. (2004). Neem: Today and in the new millennium. Springer.
- 10. FAO. (2013). *Agroforestry and multipurpose tree species: Global case studies*. Food and Agriculture Organization of the United Nations.
- 11. Gahukar, R. T. (2016). Global status of neem research and its utilization. *Indian Journal of Entomology*, 78(2), 201–210.
- 12. Kumar, A., & Sharma, S. (2021). Neem in sustainable agriculture: Current status and future prospects. *Journal of Sustainable Agriculture*, 45(4), 555–569.