

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 08 (August, 2025)

Available online at http://www.agrimagazine.in

**Agri Magazine, ISSN: 3048-8656

Napier Grass Silage: Challenges, Mitigation and Opportunities

*Dr. Simranjeet Kaur¹, Dr. Harsimran Kaur¹, Dr. Harinder Singh² and Dr. Ramandeep Singh³

¹Ph.D., School of Business Studies, Punjab Agricultural University, India
 ²M.Sc. Animal Nutrition, Excellent Enterprises, Khanna, India
 ³Director, School of Business Studies, Punjab Agricultural University, India
 *Corresponding Author's email: simranjeetkaur12895@gmail.com

Napier grass (*Pennisetum purpureum*), also known as elephant grass, is a high-yielding, perennial tropical grass widely cultivated for forage. Its rapid growth rate, high biomass potential, and adaptability to a wide range of climates make it a cornerstone of livestock feeding systems in many parts of the world (Tessema et al., 2010; IGFRI, 2021). While a highly productive feed source, its use for silage presents a unique set of challenges that must be addressed to ensure a high-quality, nutritious end product. This document provides a comprehensive overview of the challenges, mitigation strategies, and opportunities associated with Napier grass silage, along with an economic and qualitative comparison to the industry benchmark, maize silage.

Challenges in Producing Napier Grass Silage

- 1. Low Water-Soluble Carbohydrates (WSC): Unlike maize or sugarcane, Napier grass has a relatively low concentration of WSC, the fermentable sugars essential for a successful lactic acid fermentation. This deficiency can lead to a slow and incomplete pH drop, which allows undesirable microorganisms, such as *Clostridia*, to thrive. This results in a poor-quality silage with nutrient losses and an unpleasant odour (Muck & Shinners, 2001; NDRI, 2020).
- 2. **High Buffering Capacity:** The high buffering capacity of Napier grass, which is its ability to resist changes in pH, further complicates the fermentation process. It requires a greater amount of lactic acid to lower the pH to the desired range (3.8-4.2), making a quick and effective preservation more difficult to achieve (McDonald et al., 1991).
- 3. Variable Moisture Content: The moisture content of Napier grass can vary significantly depending on the age of the crop and environmental conditions. Immature grass often has a high moisture content (over 85%), which can lead to effluent losses and undesirable clostridial fermentation. Conversely, overly mature or wilted grass may have a low

moisture content, making compaction difficult and increasing the risk of aerobic spoilage (Kung & Shaver, 2001).

4. High Fiber and Low Crude Protein (CP) Content: While Napier grass provides bulk, its nutritional value is limited by its high fiber content and relatively low protein levels (typically 6-10% CP on a dry matter basis). As the plant matures, the fiber becomes more lignified, further reducing its digestibility and overall nutritional quality (Tessema et al., 2010; NDDB, 2022).

Mitigation Strategies

Overcoming these challenges requires a strategic approach that focuses on promoting efficient fermentation and improving the nutritional profile of the silage.

- 1. Use of Additives and Inoculants:
- **Fermentable Sugar Sources:** The most common mitigation strategy is to add a source of fermentable sugars to compensate for the grass's low WSC content. Molasses is the most widely used additive, typically applied at a rate of 2-5% of the fresh weight. Other sources, such as finely ground cereal grains (e.g., maize, sorghum), can also be used (Weinberg & Muck, 1996).
- Lactic Acid Bacteria (LAB) Inoculants: The addition of a homofermentative LAB inoculant can accelerate the fermentation process, ensuring a rapid pH drop and reducing the risk of spoilage (Muck, 2010).
- **Nitrogen Additives:** To address the low protein content, non-protein nitrogen sources like urea can be added. This provides a nitrogen source for rumen microbes to synthesize microbial protein, enhancing the silage's nutritional value (Kung et al., 2003).
- 2. Wilting:
- Wilting the grass for a few hours after cutting is a highly effective way to reduce the moisture content to the ideal range (60-70% DM). This helps prevent effluent losses and promotes a more favourable fermentation environment. Care must be taken to avoid overwilting, which can make compaction difficult (Muia et al., 2000; IGFRI, 2021).

3. Co-ensiling:

- Mixing Napier grass with other feedstuffs can improve its fermentation characteristics and nutritional profile. Co-ensiling with high-sugar crops (e.g., sugarcane, sweet sorghum) or high-protein legumes (e.g., desmodium, barseem, lucerne) can create a more balanced and fermentable mixture.
- 4. Harvesting Management:
- **Timely Harvest:** Harvesting at the correct stage of maturity is critical. Young, leafy grass (typically 45-60 days old) has a higher protein content and lower fiber and lignin levels, making it more digestible (Van Soest, 1994).
- **Fine Chopping:** Chopping the grass to a small particle size (e.g., 2-3 cm) but in

"Shredlage" technology is essential for effective compaction, which is a key factor in creating the anaerobic conditions necessary for a successful fermentation.

Harvest Napier grass at its vegetative stage and chop it into 1–2-inch lengths. After wilting to approximately 60–70% moisture, layer the grass into your silo, packing each layer firmly to expel air. Optionally, add brown sugar or EM solution to support fermentation. Seal the silo tightly and ferment for at least three weeks. Properly prepared silage will have a

sweet-tangy smell, light green to yellow colour, and no visible mold—resulting in nutrient-rich, easily digestible feed that improves livestock performance.

Why These Practices Matter

- **Preserves Nutrients**: Minimizes loss of vitamins and proteins through controlled fermentation.
- **Improves Digestibility**: Fermentation breaks down fiber, making nutrients more available for livestock.
- Reduces Waste: Proper sealing and compaction limit spoilage and improve shelf life.
- Enhances Feed Consistency: Offers uniform quality feed regardless of season.

Opportunities and Economic Comparison

Napier grass silage presents significant opportunities, particularly in regions where it is a primary forage crop.

- **High Biomass Yield and Sustainability:** Napier grass is a highly productive crop with multiple cuts per year, providing a consistent and high-volume source of forage. Its perennial nature makes it a sustainable option for farmers (Tessema et al., 2010; NDDB, 2022).
- Adaptability: It is well-suited to tropical and subtropical climates and is relatively tolerant of drought and lowfertility soils.
- Cost-Effective Feed: The high yield and low input costs make Napier grass silage an economically attractive option for providing a base roughage for livestock, especially in small-scale farming systems (Kebreab et al., 2008; IGFRI, 2021).

When comparing the economics of Napier grass silage with maize silage, several key differences emerge:

differences emerge.			
	Feature	Napier Grass Silage	Maize Silage
	Nutritional Profile	Low in WSC, energy, and protein; requires supplementation.	High in starch and energy, with a more balanced nutrient profile.
	Cost of Production	Lower due to high yield, low input requirements, and perennial nature.	Higher due to greater input demands (fertilizers, pesticides) and annual planting.
	Fermentation Quality	Challenging; requires additives (e.g., molasses) and careful management.	Reliable; high starch content ensures a rapid and effective fermentation.
	Animal Performance	Supports moderate performance; best used as a base roughage in a supplemented diet.	High-quality maize silage supports superior weight gain and milk production.
	Market Value	Lower value per unit of feed due to lower nutritional content.	Higher market value due to its superior quality and performance benefits.

Napier grass silage is an invaluable feed resource, especially in tropical regions where it is a cost-effective and high-yielding perennial crop. However, its successful utilization requires careful management, particularly the use of additives like molasses to overcome its inherent fermentation challenges. While maize silage offers superior nutritional quality and is the

preferred choice for high-producing animals, Napier grass silage serves as an excellent, sustainable, and economically sound base for a well-balanced livestock diet.

Role of FPOs in Promoting Napier Grass Silage

Farmer Producer Organizations (FPOs) are strategically positioned to revolutionize fodder security by organizing and scaling up the production of Napier grass silage. With the Indian dairy sector supporting over 80 million rural households and contributing approximately ₹10 lakh crore to the economy annually (NDDB, 2022), the demand for quality green fodder is immense. However, India faces a green fodder deficit of nearly 23.4% and a dry fodder deficit of around 11.2%, severely impacting livestock productivity (IGFRI, 2021). Napier grass, with its yield potential of 250–300 tons of green fodder per hectare per year, provides an economically viable solution, especially when converted into silage for year-round use. FPOs can reduce production costs by nearly 15-20% through collective procurement of inputs such as molasses and silage bags and can increase the marketable surplus of fodder by 25–30% via bulk processing and distribution. Through shared infrastructure—chopping machines, compactors, and storage pits—FPOs help smallholder farmers overcome the high capital barriers associated with silage making. They can also facilitate custom hiring centers (CHCs) for silage equipment, ensuring efficient usage and access to mechanized solutions. By integrating forward market linkages and value-addition strategies (e.g., silage baling and branding), FPOs open up entrepreneurship opportunities and improve the gross returns per hectare by ₹15,000–₹25,000 compared to traditional green fodder sales (NABARD, 2021). Furthermore, FPOs can partner with institutions like NDDB, IGFRI, and KVKs to provide extension services, capacity building, and technical training on ideal harvesting stages (45–60 days), chopping (2–3 cm), wilting, and additive use—all crucial for producing high-quality

References

1. IGFRI. (2021). *Annual Report 2020–21*. Indian Grassland and Fodder Research Institute, Jhansi. Retrieved from https://igfri.icar.gov.in

silage. In doing so, FPOs contribute to improved dairy productivity, increased milk yields,

and a resilient, climate-smart livestock system in India's fodder-deficient states.

- 2. Kebreab, E., Odongo, N. E., McBride, B. W., & France, J. (2008). Use of empirical and mechanistic models to predict methane emissions from ruminants. *Animal*, 2(10), 1416–1426.
- 3. Kung, L., & Shaver, R. (2001). Interpretation and use of silage fermentation analysis reports. *Focus on Forage*, 3(13), 1–5.
- 4. Kung, L., Stokes, M. R., & Lin, C. J. (2003). Silage additives. In *Silage Science and Technology* (pp. 305–360). American Society of Agronomy.
- 5. McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). *The Biochemistry of Silage* (2nd ed.). Chalcombe Publications.
- 6. Muck, R. E. (2010). Silage microbiology and its control through additives. *Revista Brasileira de Zootecnia*, 39, 183–191.
- 7. Muck, R. E., & Shinners, K. J. (2001). Conserved forage (silage and hay): progress and priorities. *Field Crops Research*, 71(1), 57–68.
- 8. Muia, J. M. K., Tamminga, S., & Mbugua, P. N. (2000). Feeding Napier grass to dairy cows: a review. *Tropical Grasslands*, 34(3), 145–154.
- 9. NABARD. (2021). Financing Farmer Producer Organizations: Policy, Models and Strategies. National Bank for Agriculture and Rural Development. Retrieved from https://www.nabard.org
- 10. NDDB. (2022). *Feeding and Nutrition of Dairy Animals*. National Dairy Development Board. Retrieved from https://www.nddb.coop
- 11. NDRI. (2020). Nutritional Strategies for Improving Productivity in Dairy Cattle. National Dairy Research Institute, Karnal.

- 12. Tessema, Z. K., Mihret, J., & Solomon, M. (2010). Effect of defoliation height and season on dry-matter yield and nutritive value of Napier grass (*Pennisetum purpureum*). *Tropical Grasslands*, 44(3), 158–163.
- 13. Van Soest, P. J. (1994). *Nutritional Ecology of the Ruminant* (2nd ed.). Cornell University Press.
- 14. Weinberg, Z. G., & Muck, R. E. (1996). New trends and opportunities in the development and use of inoculants for silage. *FEMS Microbiology Reviews*, 19(1), 53–68.