

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

**Open Comparison of Com

Impact of Drought on Field Crops

*Aman Mahapatra

M. Sc. Scholar, Department of Agricultural Meteorology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha-751003, India *Corresponding Author's email: mahapatra.aman2015@gmail.com

Drought is a prolonged period of deficient rainfall relative to the statistical multi-year average for a region. It poses a significant challenge to agriculture, particularly in field crops which rely heavily on timely and adequate water supply. Drought affects more people globally than any other natural disaster and is becoming more frequent and severe due to climate change. Understanding its impact on field crops is essential to develop appropriate strategies to mitigate losses and ensure food security.

Morphological and Developmental Effects

Drought stress adversely affects the morphology and developmental stages of crops:

- Germination: Water scarcity delays or inhibits seed germination and reduces seedling vigor.
- Vegetative Growth: Reduced water availability slows cell division and elongation, leading to stunted plants.
- Flowering and Pollination: Drought stress during flowering can lead to pollen sterility, flower drop, and poor fruit set.
- Grain Filling: Shortened grain filling duration results in shriveled grains and lower test weight.
- Root Development: Roots may grow deeper in search of water, but overall biomass is often reduced.

Physiological and Biochemical Responses

- Photosynthesis: Stomatal closure under drought reduces CO₂ uptake, leading to a decline in photosynthesis.
- Transpiration: While reduced transpiration conserves water, it limits nutrient transport and leaf cooling.
- Hormonal Changes: Abscisic acid (ABA) levels increase, leading to stomatal closure and growth inhibition.
- Oxidative Stress: Drought induces the production of reactive oxygen species (ROS), which damage cellular structures unless neutralized by antioxidants.

Impact on Yield and Quality of Major Field Crops

Field crops exhibit varying degrees of sensitivity to drought, depending on the crop species, variety, and growth stage during the stress period.

- Cereals (Wheat, Rice, Maize): These are staple food crops and highly vulnerable to drought, especially during the reproductive phase. In wheat, drought reduces the number of tillers, grain size, and grain weight. Rice experiences spikelet sterility and reduced panicle length. Maize suffers from poor kernel development and cob size.
- Pulses (Chickpea, Pigeonpea, Mungbean): Drought during flowering and pod filling results in flower drop, reduced pod number, and poor seed filling. Pulses are often grown in marginal environments and are highly exposed to terminal drought stress.

AGRI MAGAZINE ISSN: 3048-8656 Page 346

- Oilseeds (Groundnut, Mustard, Soybean): Oilseeds experience significant yield reduction under water stress. In soybean, drought leads to lower pod setting and reduced oil content. Mustard shows poor flowering and seed filling under moisture deficit.
- **Fiber Crops** (**Cotton**): Drought during squaring and boll development stages leads to smaller boll size, poor fiber strength, and increased shedding of squares and young bolls.
- Sugar Crops (Sugarcane, Sugar beet): Water stress reduces tillering, cane weight, and juice quality. It impacts sucrose synthesis and partitioning, thereby lowering overall sugar yield.
- Fodder Crops (Sorghum, Napier grass): Reduced vegetative growth under drought affects biomass production, digestibility, and nutritional value of the fodder, impacting livestock productivity.

Soil and Nutrient Dynamics Under Drought

Soil plays a crucial role in plant growth and nutrient supply. Drought alters the soil-plant-water relationship in several ways:

- **Soil Microbial Activity**: Microorganisms require moisture for their metabolic activities. Drought reduces microbial populations and enzyme activities, affecting processes like nitrogen fixation, decomposition of organic matter, and phosphorus solubilization.
- Nutrient Mobility and Uptake: Nutrient availability decreases due to poor solubility and reduced diffusion in dry soils. Water stress limits root expansion, reducing the plant's capacity to explore soil nutrients.
- Soil Compaction and Crusting: Dry soils become harder, affecting root penetration and aeration. Surface crusting reduces infiltration rates, worsening runoff and soil erosion during rains.
- **Soil Salinity:** In arid and semi-arid regions, high evaporation and low leaching lead to salt buildup, further stressing the plants and inhibiting water absorption.
- **Soil Organic Matter**: Decomposition slows down during drought, reducing the release of nutrients. This affects long-term soil fertility and structure.

Pest and Disease Incidence

Drought can indirectly increase pest and disease pressure:

- Weakened plants are more susceptible to pest attacks and disease infections.
- Some pests thrive in dry conditions and proliferate rapidly.
- Dry weather may suppress some foliar pathogens but favors soil-borne diseases.

Socio-Economic Impacts

- Reduced Yields: Lead to food shortages and income losses for farmers.
- Increased Costs: Irrigation and input costs rise during drought periods.
- Rural Distress: Leads to migration, unemployment, and psychological stress among farmers.
- Food Prices: Decline in production increases market prices, impacting consumers.

Adaptation and Mitigation Strategies

A multipronged approach is essential to mitigate drought impacts:

- Breeding and deploying drought-tolerant crop varieties.
- Agronomic practices such as mulching, conservation tillage, and optimized planting time.
- Efficient irrigation techniques like drip and sprinkler systems.
- Rainwater harvesting and in-situ moisture conservation.
- Crop diversification and intercropping to spread risk.
- Access to weather forecasts, crop insurance, and government relief packages.

Conclusion

Drought represents a formidable threat to sustainable crop production, especially in rainfed systems. Its impact on plant physiology, soil health, and socio-economic conditions of farmers necessitates integrated drought management strategies. Enhancing drought resilience

AGRI MAGAZINE ISSN: 3048-8656 Page 347

through research, technology, and policy support is imperative to safeguard agricultural productivity and ensure food and income security in vulnerable regions.

References

- 1. Aggarwal, P. K., et al. (2019). Climate change and Indian agriculture: Impacts, vulnerability, and adaptation. *Indian Journal of Agricultural Sciences*.
- 2. Boyer, J. S. (1982). Plant productivity and environment. *Science*, 218(4571), 443–448.
- 3. Chaves, M. M., et al. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. *Annals of Botany*, 103(4), 551–560.
- 4. FAO (2021). The impact of disasters and crises on agriculture and food security. Food and Agriculture Organization of the United Nations.
- 5. Fahad, S., et al. (2017). Crop responses to drought and heat stress: Plant physiology and climate change adaptation. *Environmental and Experimental Botany*, 141, 22–38.
- 6. IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Intergovernmental Panel on Climate Change.
- 7. Lobell, D. B., et al. (2011). Climate trends and global crop production since 1980. *Science*, 333(6042), 616–620.
- 8. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. *Trends in Plant Science*, 7(9), 405–410.
- 9. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. *Annual Review of Plant Biology*, 59, 651–681.
- 10. Passioura, J. (2007). The drought environment: Physical, biological and agricultural perspectives. *Journal of Experimental Botany*, 58(2), 113–117.

AGRI MAGAZINE ISSN: 3048-8656 Page 348