

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in
[©] Agri Magazine, ISSN: 3048-8656

Genomics-Assisted Breeding in Tomato: A New Horizon in Horticultural Crop Improvement

*Bommu Balaraju, Gumma Ashok and Avula Manikanth
B.Sc. (Hons.) Horticulture, College of Horticulture, Venkataramannagudem,
Dr.YSRHU, Venkataramannagudem, A.P., India
*Corresponding Author's email: bommubalaraju614@gmail.com

The rapid evolution of genomic tools has transformed plant breeding, particularly for high-value horticultural crops like tomato. From traditional marker-assisted selection (MAS) to advanced genomics-assisted breeding (GAB), recent progress in high-throughput sequencing, SNP genotyping, and genome-wide association studies (GWAS) is revolutionizing varietal development. This article highlights the transition from conventional breeding to GAB in tomato, focusing on trait improvement for yield, disease resistance, stress tolerance, and quality. Drawing insights from recent advances in genetic mapping, pangenome assembly, and SNP markers, it outlines how genomics is making tomato breeding faster, more accurate, and aligned with consumer and environmental needs. Challenges and future perspectives for integrating genomics into mainstream horticulture are also discussed.

Keywords: Tomato breeding, genomics-assisted selection, molecular markers, SNPs, GWAS, pan-genome, horticulture.

Introduction

Tomato (*Solanum lycopersicum L.*), a globally cultivated horticultural crop, is essential for fresh consumption and food processing. Its nutritional composition, rich in lycopene, β-carotene, flavonoids, and vitamins A and C, makes it integral to a healthy diet. In 2020, global tomato production reached 186.8 million tonnes across 5 million hectares, with average productivity of 36.9 t/ha (FAOSTAT, 2022). However, tomato production is constrained by susceptibility to biotic and abiotic stresses, leading to significant yield losses. Breeding climate-resilient, high-yielding, and quality varieties has thus become a priority. While conventional breeding methods have led to important developments, they are often time-consuming and less precise. Recent advances in genomics and molecular biology are changing this paradigm. Marker-assisted selection (MAS) and, more recently, genomics-assisted breeding (GAB) have emerged as powerful tools to accelerate tomato improvement programs (Tiwari et al., 2022).

Marker-Assisted Selection (MAS): Laying the Foundation

MAS involves the use of molecular markers linked to desirable traits to select superior genotypes. Tomato was among the first crops where molecular markers were widely applied, with RFLP-based maps dating back to the 1980s (Tanksley & Rick, 1980). Initially used for disease resistance breeding, MAS enables early and precise selection for traits such as:

- Resistance to Fusarium wilt (I, I-2, I-3)
- Tomato yellow leaf curl virus (Ty1–Ty4)
- Root-knot nematode (Mi)
- Tomato spotted wilt virus (Sw-5)

PCR-based markers such as SCAR, CAPS, and InDels have been instrumental in backcross breeding and gene pyramiding for these traits. However, MAS is more effective for traits

AGRI MAGAZINE ISSN: 3048-8656 Page 325

governed by single genes and becomes challenging for polygenic traits like yield and abiotic stress tolerance.

Transition to Genomics-Assisted Breeding (GAB)

The sequencing of the tomato genome in 2012 marked a turning point in tomato improvement. With reduced sequencing costs and improved bioinformatics, thousands of tomato accessions—including wild relatives—have been re-sequenced to explore structural variations, genetic diversity, and trait-associated loci (Tiwari et al., 2022). These developments enabled new breeding strategies:

Genome-Wide Association Studies (GWAS): GWAS uses high-density SNP data to associate genetic variation with phenotypic traits. It has led to the identification of QTLs linked to fruit firmness, sugar content, shelf life, and stress tolerance. GWAS is particularly useful for dissecting complex traits in diverse germplasm.

Pan-genome and Resequencing: The tomato pan-genome combines core and dispensable genes across different accessions, helping breeders understand the genetic basis of trait diversity. Genes for disease resistance, abiotic stress tolerance, and flavor compounds have been identified in wild relatives such as *S. pimpinellifolium* and *S. habrochaites*.

Genomic Selection (GS): GS involves using genome-wide markers to predict the performance of breeding lines, increasing selection efficiency and reducing cycle time. Unlike MAS, GS considers the cumulative effect of thousands of loci, making it ideal for improving complex traits like yield, flavor, and climate adaptability.

Key Traits Targeted in GAB of Tomato

Biotic Stress Resistance: Tomato is affected by over 200 pathogens, including fungi, bacteria, viruses, and nematodes. Resistance genes (e.g., *Pto*, *Mi*, *Sw-5*, *Ty*) have been integrated into elite varieties using MAS and GAB. For example:

- *I-2* and *I-3* genes confer Fusarium wilt resistance
- Ty-2 and Ty-3 provide resistance against TYLCV
- Mi genes impart nematode resistance

Abiotic Stress Tolerance: Tomato's sensitivity to drought, heat, salinity, and cold limits its productivity. QTLs and candidate genes have been mapped for traits like root architecture, osmotic balance, and oxidative stress response. Examples include:

- *HKT1*;2 for salt tolerance
- *Di19-3* for drought response
- SlHsfA1a for heat stress resilience

Yield and Quality Traits: Genomic tools have identified loci controlling:

- Fruit size and shape (fw2.2, ovate)
- Flavor and acidity (sugars, organic acids)
- Color (lycopene, β-carotene)
- Shelf life (*rin*, *nor*)

Using SNP markers, breeders can now pyramid desirable traits into elite lines for both fresh and processing markets.

Recent Technological Advances

SNP Genotyping Platforms: High-throughput genotyping using SNP arrays and genotyping-by-sequencing (GBS) has accelerated QTL mapping and diversity studies. SNP markers are now preferred for their abundance, stability, and ease of automation.

CRISPR-Cas Genome Editing: Though still in early stages for horticultural crops, CRISPR-based tools offer precise editing of genes associated with disease resistance and quality. For instance, knocking out *SIPMR4* improved powdery mildew resistance (Zsögön et al., 2018).

MAGIC and NAM Populations: Multi-parent populations like MAGIC (Multi-parent Advanced Generation InterCross) and NAM (Nested Association Mapping) provide high-resolution mapping of QTLs and facilitate the discovery of novel alleles.

AGRI MAGAZINE ISSN: 3048-8656 Page 326

Challenges in Genomics-Assisted Breeding

Despite substantial progress, several limitations persist:

- Linkage drag from wild relatives introduces undesirable traits
- Population-specific QTLs limit marker transferability
- **High cost and technical expertise** required for SNP genotyping and data analysis
- Lack of validated markers for many abiotic and quality traits

Integration of genomics with phenomics, transcriptomics, and metabolomics is essential to overcome these bottlenecks.

Future Directions and Policy Recommendations

To fully realize the potential of genomics-assisted breeding in tomato:

- Strengthen public-private partnerships for technology transfer and scaling
- Build breeder capacity in bioinformatics and molecular tools
- **Invest in infrastructure** for SNP genotyping and phenotyping platforms
- Promote open-access databases for germplasm, markers, and traits
- Incentivize development of climate-resilient varieties through innovation grants

With increasing consumer demand for quality, nutrition, and sustainability, genomics-assisted tomato breeding is set to play a central role in future horticulture.

Conclusion

Genomics-assisted breeding represents a paradigm shift in horticultural crop improvement. By combining the precision of molecular markers with the power of high-throughput genomics, breeders can develop superior tomato varieties tailored to diverse environments and market needs. From disease resistance to flavor enhancement, the integration of genomic tools is making tomato breeding faster, more efficient, and sustainable. Continued investment in research, infrastructure, and capacity-building will ensure that genomics becomes a core pillar of modern horticulture.

References

- 1. FAOSTAT. (2022). Food and Agriculture Organization Corporate Statistical Database. https://www.fao.org/faostat/en/#data
- 2. Tiwari, J. K., Yerasu, S. R., Rai, N., Singh, D. P., Singh, A. K., Karkute, S. G., Singh, P. M., & Behera, T. K. (2022). Progress in marker-assisted selection to genomics-assisted breeding in tomato. *Critical Reviews in Plant Sciences*, 41(5), 321–350. https://doi.org/10.1080/07352689.2022.2130361
- 3. Tanksley, S. D., & Rick, C. M. (1980). Isozymic gene loci and their linkage relationships in the tomato. *Theoretical and Applied Genetics*, 57(3), 161–170.
- 4. Zsögön, A., Cermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., ... & Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. *Nature Biotechnology*, *36*(12), 1211–1216. https://doi.org/10.1038/nbt.4272
- 5. Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. *Science*, 277(5329), 1063–1066.
- 6. Hao, Y., Zhang, Y., Liu, W., Zhou, R., & Sun, C. (2020). Application of genomic selection to crop improvement. *Frontiers in Genetics*, 11, 574463. https://doi.org/10.3389/fgene.2020.574463

AGRI MAGAZINE ISSN: 3048-8656 Page 327