

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

**Open Comparison of Com

Engineering Sustainability: Protected Cultivation as a Pathway to Smarter Horticulture Production

*Bommu Balaraju, Gumma Ashok and Avula Manikanth
B.Sc. (Hons.) Horticulture, College of Horticulture, Venkataramannagudem,
Dr.YSRHU, Venkataramannagudem, A.P., India
*Corresponding Author's email: bommubalaraju614@gmail.com

Horticulture in the 21st century is confronting climate-induced challenges that threaten sustainable food and nutritional security. Protected cultivation, a technology-driven intervention, enables year-round production of high-value vegetables under controlled environments. This article explores the scope, benefits, and future potential of protected cultivation systems such as polyhouses, shade nets, and greenhouses in horticulture. By enabling temperature and humidity regulation, reducing biotic and abiotic stresses, and optimizing inputs like water and fertilizers, these structures are proving transformative, particularly in off-season and high-altitude farming. Using recent Indian and global data, the article analyzes current adoption trends, infrastructural needs, and policy recommendations for scaling protected cultivation across diverse agro-climatic zones.

Keywords: Protected cultivation, greenhouse horticulture, polyhouse technology, vegetable production, off-season farming, climate resilience, controlled environment agriculture.

Introduction

Horticulture plays a pivotal role in India's agricultural economy, contributing to food security, nutrition, employment, and income diversification. With India being the second-largest vegetable producer globally—after China—it produced 184.4 million tonnes of vegetables from 25.4 million hectares in 2017–18 (Horticultural Statistics at a Glance, 2018). However, climatic stress, water scarcity, pest infestation, and seasonal availability limit the quality and quantity of open-field horticultural produce. Protected cultivation, involving the use of engineered structures like greenhouses and shade nets to control microclimates, offers a sustainable solution to these challenges. It enables cultivation during off-seasons and in adverse conditions like high altitudes, deserts, or urban areas, helping maximize resource efficiency and yield quality (Kumar & Singh, 2020). This article discusses the scientific, economic, and environmental significance of protected cultivation in vegetable horticulture.

The Concept of Protected Cultivation

Protected cultivation is defined as a method of modifying the natural environment to provide optimal growth conditions for plants. It encompasses:

- **Polyhouses**: Transparent plastic-covered structures
- **Greenhouses**: Glass or UV-stabilized plastic-covered frames
- Shade nets and tunnels: Partially covered systems reducing solar radiation
- Walk-in tunnels and low tunnels: Temporary or semi-permanent setups

These systems allow the regulation of temperature, humidity, light, and pest exposure. They are particularly effective for high-value vegetables such as capsicum, tomatoes, cucumbers, leafy greens, and exotic herbs, often ensuring higher productivity, better quality, and off-season marketing advantages (Chandra et al., 2000; Iyengar et al., 2011).

AGRI MAGAZINE ISSN: 3048-8656 Page 319

Current Trends and Adoption in India

India's experience with protected cultivation began in the late 1990s through Indo-Israeli collaborative projects at IARI, New Delhi. Today, India has more than 5,700 hectares under protected cultivation, with Maharashtra and Gujarat leading in adoption (Kumar & Singh, 2020). The National Horticulture Board (NHB) provides a 50% subsidy for structures up to 4,000 sq. m per farmer to boost the uptake of this technology.

Despite this progress, India lags behind countries like China (2.76 million ha), South Korea (57,000 ha), and Spain (52,000 ha) in protected horticulture area (FAO, 2020). The scope for expansion remains vast, especially in peri-urban areas, hill states, and water-deficient regions.

Advantages of Protected Cultivation in Horticulture

Off-season Production

Protected structures allow crops to grow beyond their natural season, ensuring premium market prices. For instance, off-season cultivation of cucurbits under low tunnels in northern India has shown 48% income increase compared to conventional farming.

Water and Input Efficiency

Through micro-irrigation and fertigation systems, protected cultivation reduces water use by 30–50% while enhancing fertilizer use efficiency (Yadav et al., 2014). Rainwater harvesting systems further improve sustainability.

Quality and Yield Enhancement

Vegetables grown under protection are less exposed to wind, UV radiation, and pathogens, resulting in improved appearance, longer shelf life, and reduced pesticide residues.

Climate Resilience

Protected systems mitigate the effects of climate variability—heat waves, erratic rainfall, and cold spells—by offering a controlled growing environment. This is critical for regions like Ladakh and parts of Himachal Pradesh.

Disease and Pest Management

Net houses reduce insect ingress, limiting the spread of viruses and bacterial diseases. Consequently, chemical usage is minimized, promoting safer and environmentally friendly practices (Sirohi & Behera, 2000).

Technological Innovations

Cladding and Ventilation

Modern greenhouses use UV-stabilized poly-films with selective light transmission for better photosynthetic efficiency. Naturally ventilated greenhouses reduce energy costs by avoiding fans and coolers.

Automation

Sensors, actuators, and computer systems now allow for real-time monitoring of parameters like CO₂ concentration, soil moisture, temperature, and EC/pH levels of nutrient solutions, leading to precision horticulture (Kacira, 2011).

Vertical Farming and Soilless Systems

Protected cultivation supports advanced horticultural models like hydroponics, aeroponics, and vertical beds, which enable year-round high-density production with minimal resource use (Lakkireddy et al., 2012).

Challenges and Constraints

While the benefits are compelling, widespread adoption is constrained by:

- **High initial costs**: Polyhouses and automation systems require significant investment.
- Short lifespan of materials: Cladding sheets need periodic replacement.
- **Skill gaps**: Farmers require training in greenhouse management and crop protocols.
- Limited local R&D: Imported technologies often don't suit Indian agro-climatic zones.
- Subsidy bottlenecks: Administrative delays reduce uptake of government schemes.

AGRI MAGAZINE ISSN: 3048-8656 Page 320

Policy and Institutional Support

The Government of India supports protected horticulture through schemes like the Mission for Integrated Development of Horticulture (MIDH) and Rashtriya Krishi Vikas Yojana (RKVY). NHB offers financial assistance with ceilings of up to ₹36 lakhs per farmer. State horticulture missions also play key roles in localized implementation.

Recommendations include:

- Standardizing greenhouse designs based on regional conditions
- Strengthening extension services for farmer training
- Promoting indigenously developed hybrids and rootstocks suitable for protected environments
- Supporting agribusiness incubation for processing and marketing high-quality vegetables

International Perspectives

Countries like China, Spain, and the Netherlands have successfully integrated protected cultivation with export-oriented horticulture. In China, over 2.7 million hectares are under greenhouses, primarily for vegetables. Spain uses 51,000 ha of low-cost polyhouses for export crops like tomatoes and peppers. Israel has pioneered drip fertigation and climate-controlled greenhouses for arid zones (FAO, 2022). India can learn from these models while tailoring solutions to local socio-economic and agro-ecological contexts.

Conclusion

Protected cultivation represents a vital shift toward sustainable and climate-resilient horticulture. It enables higher productivity, better resource efficiency, and improved produce quality. By extending the vegetable-growing season and supporting off-season production, it offers both nutritional security and income stability to smallholders. For India, the next step is to scale protected cultivation with region-specific research, farmer-centric policy frameworks, and inclusive financing mechanisms. With proper investment and awareness, protected horticulture can become a pillar of the country's food systems transformation.

References

- 1. Chandra, P., Sirohi, P. S., Behera, T. K., & Singh, A. K. (2000). Cultivating vegetables in polyhouse. *Indian Horticulture*, 45, 17–25.
- 2. FAO. (2020). Global report on protected horticulture and controlled environment agriculture. Food and Agriculture Organization of the United Nations.
- 3. Iyengar, K. S., Gahrotra, A., Mishra, A., Kaushal, K. K., & Dutt, M. (2011). *Greenhouse A reference manual*. NCPAH.
- 4. Kacira, M. (2011). Greenhouse production in US: Status, challenges, and opportunities. *Mishra et al.*, *Defence Science Journal*, 61(2), 219–225.
- 5. Kumar, D., & Singh, B. (2020). Vegetables cultivation under protected conditions. *Progressive Agriculture*, 20(1 & 2), 148–152. https://doi.org/10.5958/0976-4615.2020.00022.8
- 6. Lakkireddy, K. K. R., Kasturi, K., & Sambasiva Rao, K. R. S. (2012). Role of hydroponics and aeroponics in soilless culture in commercial food production. *Research & Reviews: Journal of Agriculture Science and Technology*, *I*(1), 26–35.
- 7. Sirohi, P. S., & Behera, T. K. (2000). Protected cultivation and seed production in vegetables. *Indian Horticulture*, 45, 23–25.
- 8. Yadav, R. K., Kalia, P., Choudhary, H., Hussain, S., & Dev, R. (2014). Low-cost polyhouse technologies for higher income and nutritional security. *International Journal of Agriculture and Food Science Technology*, 5(3), 191–196.

AGRI MAGAZINE ISSN: 3048-8656 Page 321