

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

**Open Comparison of Com

Nanotechnology in Plant Viral Disease Management: A Frontier in Sustainable Agriculture

*S Sunil¹ and K Radhika²

¹M.Sc. Scholar, Department of Mycology Plant Pathology, Institute of Agricultural Sciences, BHU, Varanasi, Uttar Pradesh, India

²M.Sc. Scholar, Department of Pathology, College of Agriculture, PJTSAU, Hyderabad, Telangana, India

*Corresponding Author's email: sunil2000@bhu.ac.in

Plant viruses represent a critical threat to global food security, accounting for nearly 47% of losses caused by plant pathogens. With increasing pressure from climate change, vector proliferation, and rising resistance to conventional control measures, nanotechnology is emerging as a promising alternative in viral disease diagnostics, control, and prevention. This review highlights current developments in nanophytovirology, focusing on nano-enabled diagnostics, nanocarriers for RNAi, nanopesticides, and antiviral nanomaterials. We explore their mechanisms of action, recent case studies, and future potential in integrated plant disease management systems, with emphasis on safety, efficacy, and sustainability.

Keywords: Nanophytovirology, plant viruses, nanoparticles, antiviral agents, biosensors, RNAi delivery, nano-enabled diagnostics, viral disease management

Introduction

Plant viral diseases are a major cause of yield losses, threatening both global food production and the livelihoods of millions of farmers. Viruses such as Tomato yellow leaf curl virus (TYLCV), Cucumber mosaic virus (CMV), and Potato virus Y (PVY) are among the most destructive, with impacts on vegetables, pulses, fruits, and cereals. According to Anderson et al. (2004), over 47% of crop losses from plant diseases are attributed to viruses. Traditional plant protection strategies like chemical sprays and resistant varieties have limited success in viral disease control, primarily due to the complex transmission routes—especially by insect vectors—and the rapid mutation rates of viruses (Dutta et al., 2022). In this context, nanotechnology, particularly nanophytovirology, offers significant potential for early detection, disease suppression, and sustainable management.

Nanotechnology and Its Agricultural Relevance

Nanotechnology deals with particles sized between 1 and 100 nm, whose unique surface properties and reactivity enable novel applications in agriculture. In the context of plant pathology, nanoparticles (NPs) exhibit antimicrobial, antiviral, and biostimulant properties. These include metal-based nanoparticles like silver (AgNPs), gold (AuNPs), zinc oxide (ZnO), titanium dioxide (TiO₂), and silica (SiO₂), which can interfere with viral replication, movement, and host interactions (Elmer et al., 2018; Dutta et al., 2022).

Nanoparticle-Based Diagnostics for Plant Viruses Nano-Biosensors

Early and accurate detection is critical for effective plant virus management. Nano-biosensors utilize quantum dots, metallic nanoparticles, or nanowires conjugated with viral antibodies or nucleic acid probes to detect viruses at very low concentrations. For instance, gold nanoparticles conjugated with anti-viral antibodies have been used for the detection of Citrus

AGRI MAGAZINE ISSN: 3048-8656 Page 297

tristeza virus (CTV) and Tomato mosaic virus (TMV) via surface plasmon resonance and quartz-crystal microbalance (Marwal & Sahu, 2014; Shojaei et al., 2016). Lavanya and Arun (2021) developed a visual gold nanoparticle (AuNP) assay for Begomoviruses detection in tomato and legumes with 77.7% accuracy, outperforming conventional PCR.

Quantum Dots and Microcantilevers

Quantum dots (QDs), with their photoluminescent properties, are used for tagging and imaging of viral particles. Microcantilevers detect changes in resonance frequency when viral binding occurs, serving as ultra-sensitive label-free sensors.

Nanoparticles as Antiviral Agents

Metallic NPs can directly interact with viral capsid proteins, damaging or denaturing them and thereby preventing replication or transmission.

Silver Nanoparticles (AgNPs)

AgNPs are the most studied antiviral agents. Jain (2014) demonstrated complete suppression of Sunhemp rosette virus (SHRV) in cluster bean using 50 ppm AgNPs. Similarly, El-Shazly et al. (2017) showed that AgNPs applied to PVY-infected potato plants reduced infection and increased tuber yield.

Zinc and Iron Nanoparticles

ZnO and Fe₃O₄ NPs have demonstrated antiviral action against TMV, reducing symptom expression and inducing systemic acquired resistance by enhancing antioxidant enzyme levels (Cai et al., 2020).

Composite and Hybrid Nanoparticles

Graphene oxide-silver nanocomposites (GO-AgNPs) reduced Tomato bushy stunt virus (TBSV) severity in lettuce (Elazzazy et al., 2017). Silicon dioxide (SiO₂) and titanium dioxide (TiO₂) nanoparticles have also shown promise against PRSV and BBSV.

RNAi Delivery via Nanoparticles

Nanoparticles serve as carriers for double-stranded RNA (dsRNA) molecules used in gene silencing strategies against viruses. The BioClay system, composed of layered double hydroxide (LDH) loaded with dsRNA, has shown to protect plants from CMV and PMMoV for up to 20 days (Worrall et al., 2018). This delivery method is target-specific, environmentally friendly, and does not require genetic modification of host plants.

Nanoparticles as Biostimulants and Defense Activators

NPs can act as biostimulants by enhancing photosynthesis, nutrient uptake, and stress tolerance. Their role in inducing antioxidant enzymes (CAT, POD, SOD) helps in mitigating viral-induced oxidative stress (Tan et al., 2018).

For instance:

- SiO₂ and Fe₃O₄ NPs increased the expression of defense-related genes like PAL, PR1, and PR2 (Cai et al., 2020).
- AgNPs enhanced proline and total soluble protein levels in virus-infected tomato plants (El-Dougdoug & El-Dougdoug, 2018).

Application Methods and Field Feasibility

NPs can be applied as:

- Foliar sprays
- Soil amendments
- Seed treatments

In India, SiO₂NPs have been successfully used against PRSV in cucumber (Elsharkawy & Mousa, 2015). Further studies report improved plant growth, yield, and virus suppression when NPs are used prophylactically.

Environmental and Biosafety Concerns

Despite their promise, there are concerns:

- Nanoparticles may persist in soil or water
- Accidental exposure to pollinators or beneficial microbes

AGRI MAGAZINE ISSN: 3048-8656 Page 298

• Cytotoxic effects in non-target organisms

Therefore, regulatory frameworks and eco-toxicological assessments must be emphasized. The OECD and FAO recommend cautious scaling with field-based risk assessment.

Future Perspectives and Recommendations

To advance nanophytovirology:

- Multidisciplinary collaboration is essential (biotech, pathology, nano-engineering)
- Field trials and cost-benefit analyses must precede commercialization
- Research must explore:
- ✓ Effects on DNA viruses and satellite RNAs
- ✓ Role of nanocomposites in broad-spectrum virus control
- ✓ Interaction of NPs with virus-vector-host ecosystems

Nanotechnology must be integrated with Integrated Pest and Disease Management (IPDM) for holistic crop protection.

Conclusion

Nanotechnology offers a transformative approach for managing plant viral diseases, from ultra-sensitive detection to eco-friendly suppression. While much of the research is still in controlled environments, the practical implementation of nanoparticles in diagnostics and disease control is rapidly becoming feasible. With safety protocols, sound formulation, and policy support, nanophytovirology could revolutionize sustainable agriculture.

References

- 1. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. *Trends in Ecology & Evolution*, 19(10), 535–544. https://doi.org/10.1016/j.tree.2004.07.021
- 2. Cai, L., Liu, C., Jia, H., Fan, G., & Sun, X. (2020). Foliar exposure of Fe₃O₄ nanoparticles on *Nicotiana benthamiana*: Evidence for uptake, growth promotion, and elicitation of defense responses. *Journal of Hazardous Materials*, 393, 122415. https://doi.org/10.1016/j.jhazmat.2020.122415
- 3. Dutta, P., Kumari, A., Mahanta, M., Biswas, K. K., Dudkiewicz, A., Thakuria, D., ... & Mazumdar, N. (2022). Advances in nanotechnology as a potential alternative for plant viral disease management. *Frontiers in Microbiology*, 13, Article 935193. https://doi.org/10.3389/fmicb.2022.935193
- 4. El-Dougdoug, K. A., & El-Dougdoug, N. K. A. M. (2018). Evaluation of silver nanoparticles as antiviral agent against ToMV and PVY in tomato plants. *Middle East Journal of Applied Sciences*, 8(1), 100–111.
- 5. Elmer, W. H., Ma, C., & White, J. C. (2018). Nanoparticles for plant disease management. *Current Opinion in Environmental Science & Health*, 6, 66–70. https://doi.org/10.1016/j.coesh.2018.08.002
- 6. Elsharkawy, M. M., & Mousa, K. M. (2015). Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector *Myzus persicae* by *Penicillium simplicissimum* GP17-2 and silica nanopowder. *International Journal of Pest Management*, 61(4), 353–358. https://doi.org/10.1080/09670874.2015.1070930
- 7. El-Shazly, M. A., Attia, Y. A., & Kabil, F. F. (2017). Inhibitory effects of salicylic acid and silver nanoparticles on Potato Virus Y infected potato plants. *Middle East Journal of Agriculture Research*, 6(4), 835–848.
- 8. Jain, N. (2014). Effectiveness of silver nanoparticles against viral diseases in plants. *Indian Journal of Virology*, 25(1), 51–57.
- 9. Lavanya, V., & Arun, M. (2021). Detection of Begomoviruses using visual gold nanoparticle assay. *Indian Phytopathology*, 74(2), 215–222.
- 10. Worrall, E. A., et al. (2018). Exogenous application of RNA molecules in plant protection against viruses: challenges and perspectives. *Frontiers in Plant Science*, 9, 1178. https://doi.org/10.3389/fpls.2018.01178

AGRI MAGAZINE ISSN: 3048-8656 Page 299