

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Modern Molecular Diagnostics: A New Era in Fungal Plant Disease Detection

*S Sunil¹ and Nakka Amulya²

¹M.Sc. Scholar, Department of Mycology Plant Pathology, Institute of Agricultural Sciences, BHU, Varanasi, Uttar Pradesh, India ²M.Sc. Scholar, Department of Genetics and Plant Breeding, RLBCAU, Jhansi,

Uttar Pradesh, India

*Corresponding Author's email: sunil2000@bhu.ac.in

Fungal plant pathogens are major contributors to global agricultural losses, threatening food security and sustainability. Conventional diagnostic tools often fall short due to limitations in sensitivity, specificity, and time. Recent advances in molecular biology have revolutionized plant pathology by enabling accurate, rapid, and sensitive identification of fungal pathogens. This article explores a suite of modern molecular diagnostic techniques such as PCR variants, loop-mediated isothermal amplification (LAMP), rolling circle amplification (RCA), magnetic capture hybridization PCR, and next-generation sequencing (NGS). These tools are redefining plant disease surveillance by allowing early detection, even of unculturable or latent pathogens, and thus enhancing integrated disease management efforts.

Keywords: Fungal pathogens, Molecular diagnostics, PCR, LAMP, NGS, Plant pathology, Disease detection

Introduction

Fungal pathogens are responsible for numerous plant diseases like anthracnose, rust, blight, wilt, and damping-off, which significantly affect yield and quality in both food and commercial crops. With over 8,000 fungal species identified as plant pathogens, the need for early and precise detection is more critical than ever. Traditional diagnostic methods—based on visual symptoms, culturing, and microscopy—are laborious, less sensitive, and often unreliable in complex infections or latent phases. This has led to a growing reliance on molecular techniques, which offer faster, more accurate diagnostics, even for mixed or asymptomatic infections (Hariharan & Prasannath, 2021).

Evolution of Molecular Tools in Plant Pathogen Detection Polymerase Chain Reaction (PCR) and Its Variants

PCR is the cornerstone of molecular diagnostics. It allows the amplification of specific DNA fragments using primers and enzymes. End-point PCR, though foundational, is gradually being replaced by advanced forms such as:

- Nested PCR: Increases sensitivity and specificity using two rounds of amplification.
- Multiplex PCR: Detects multiple pathogens in one reaction using several primer sets.
- Quantitative PCR (qPCR): Enables real-time monitoring and quantification of pathogen load. It is particularly useful for tracking infections where early intervention is critical.

Each of these PCR methods has been successfully used to detect pathogens like *Fusarium oxysporum*, *Colletotrichum spp.*, and *Ramularia collo-cygni* in crops such as rice, wheat, barley, and citrus.

AGRI MAGAZINE ISSN: 3048-8656 Page 294

Isothermal Amplification Technologies

Isothermal methods do not require thermal cycling equipment, making them ideal for field diagnostics.

Loop-Mediated Isothermal Amplification (LAMP)

LAMP uses four to six primers and a strand-displacing polymerase to achieve rapid amplification at a constant temperature (60–65°C). It is known for high specificity and speed—results are often visible within 30–60 minutes.

LAMP has been effectively applied to diagnose:

- Fusarium circinatum in pines,
- *Uromyces betae* in sugar beet,
- Magnaporthe oryzae in rice,
- Colletotrichum falcatum in sugarcane.

Its ability to tolerate inhibitors and allow visual detection makes it ideal for low-resource settings.

Rolling Circle Amplification (RCA)

RCA uses a circular DNA template and a polymerase to produce long single-stranded DNA. It has been used to identify *Neofabraea spp.* and *Fusarium graminearum*. RCA is particularly useful for detecting genetically diverse pathogens, and it doesn't require expensive equipment.

Hybridization-Based and Probe-Assisted Techniques Magnetic Capture Hybridization PCR (MCH-PCR)

This technique isolates target DNA using magnetic beads coated with biotin-labeled oligonucleotide probes, which enhances sensitivity by removing inhibitors. It has been used to detect seed-borne pathogens like *Didymella bryoniae* and *Acidovorax avenae* in cucurbits.

BIO-PCR

BIO-PCR adds a pre-enrichment step before PCR to increase pathogen biomass, improving the sensitivity of detection. It is especially valuable in seed health testing. For example, *Colletotrichum lupini* was successfully diagnosed in lupin seeds using BIO-PCR.

Post-Amplification and Microarray Technologies

DNA Microarrays

DNA microarrays involve fixed probes on glass slides that hybridize with labeled cDNA from pathogens. They allow high-throughput and simultaneous detection of multiple pathogens. For instance, microarrays have been used to detect *Rhizoctonia solani*, *Fusarium spp.*, and *Colletotrichum coccodes* in potato.

DNA Macroarrays

Macroarrays use nylon membranes instead of glass and are often cheaper. They have been used to identify multiple black-foot disease pathogens in grapevines and various foliar diseases in apples. Though less advanced than microarrays, they remain a reliable and scalable option for multi-pathogen detection.

In Situ and Fluorescent Hybridization

In situ hybridization (ISH) and **fluorescent in situ hybridization (FISH)** techniques use labeled DNA or RNA probes to detect pathogens directly in plant tissues. FISH, for instance, has been used to identify *Sclerotium rolfsii* in tomato roots. These methods allow for spatial resolution, helping to visualize pathogen localization in host tissues.

Next-Generation Sequencing (NGS): The Game Changer

NGS platforms like Illumina and PacBio enable whole genome sequencing of pathogens without the need for prior sequence knowledge. Applications include:

- Identifying unknown pathogens (e.g., *Calonectria pseudonaviculata* in ornamental plants).
- Monitoring pathogen populations (e.g., *Puccinia striiformis* in wheat).
- Developing molecular markers for diagnostics.

AGRI MAGAZINE ISSN: 3048-8656 Page 295

NGS can also assist in comparative genomics, resistance gene identification, and epidemiological surveillance. However, its high cost, data analysis complexity, and need for bioinformatics expertise are challenges.

Challenges and Future Directions

While molecular diagnostics offer high sensitivity, accuracy, and speed, several challenges remain:

- Cost and Equipment: Many techniques require expensive reagents and sophisticated instruments.
- **Technical Expertise**: Operators must be trained in both molecular biology and data interpretation.
- **Field Applicability**: Few assays are field-deployable without lab infrastructure.
- Cross-Reactivity and Contamination: Some methods are prone to false positives due to contamination.

The future lies in miniaturized, user-friendly devices that combine detection with artificial intelligence and cloud-based databases. Integration with smartphone apps, point-of-care kits, and drone-based sampling will revolutionize plant disease surveillance.

Conclusion

Molecular diagnostic tools are transforming plant pathology from reactive to proactive disease management. Techniques like PCR, LAMP, RCA, and NGS have enabled early detection and precise identification of fungal pathogens, many of which are undetectable through conventional means. These technologies will play a crucial role in ensuring global food security, especially as agriculture faces increasing threats from climate change, global trade, and pathogen evolution. The focus must now shift toward making these innovations accessible, affordable, and adaptable to real-world agricultural systems.

References

- 1. Hariharan, G., & Prasannath, K. (2021). Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. *Frontiers in Cellular and Infection Microbiology*, 10, 600234. https://doi.org/10.3389/fcimb.2020.600234
- 2. Alemu, K. (2014). Real-time PCR and its application in plant disease diagnostics. *Advances in Life Science and Technology*, 27, 39–41.
- 3. Capote, N., et al. (2012). Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In C. Cumagun (Ed.), *Plant Pathology* (pp. 151–202). InTech.
- 4. Chander, Y., et al. (2014). A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). *Frontiers in Microbiology*, *5*, 395.
- 5. Malapi-Wight, M., et al. (2016). Draft genome of *Calonectria pseudonaviculata*, causal agent of boxwood blight. *Genome Announcements*, 4(1), e01531-15.

AGRI MAGAZINE ISSN: 3048-8656 Page 296