

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

**Open Comparison of Com

Toward Sustainable Food Fortification: Role of Vacuum Impregnation Technology

*V. Boomika¹ and B. Thippeswamy²
¹Horticultural College and Research Institute, TNAU, Coimbatore, India
²Indian Institute of Horticultural Research, Bengaluru, India
*Corresponding Author's email: boomika1727@gmail.com

Vacuum impregnation (VI) is an emerging non-thermal food processing technique that facilitates the controlled infusion of functional substances into porous food matrices through pressure differentials. It has gained prominence for enhancing food quality, nutritional content, shelf life, and sensory attributes without compromising structural integrity. The technique involves subjecting food materials submerged in an impregnating solution to a vacuum environment, thereby replacing the air in their pores with bioactive compounds, preservatives, or functional ingredients. This article comprehensively explores the history, working principles, process steps, equipment models, and influencing factors of vacuum impregnation. Additionally, it highlights its applications across fruit, vegetable, dairy, and meat sectors for texture improvement, flavor enhancement, and food fortification. As consumer demand rises for clean-label and minimally processed functional foods, vacuum impregnation presents a promising avenue for sustainable and high-value food innovation.

Keywords: Food processing, Non-thermal processing, Porous foods, Texture enhancement, Vacuum impregnation.

Introduction

Vacuum impregnation (VI) is an innovative food processing technology that enhances the mass transfer of liquids into porous food materials under controlled vacuum conditions. This technique is widely used to improve food quality, enhance preservation, and introduce bioactive compounds into food products. By applying a vacuum, the air within food pores is removed, allowing rapid and uniform impregnation of substances like vitamins, minerals, antioxidants, and preservatives. VI is extensively used in fruit and vegetable processing to enhance texture, reduce enzymatic browning, and fortify foods with functional ingredients. Dairy, meat, and bakery industries also benefit from this technique by improving moisture retention, flavor enhancement, and product stability. Compared to traditional soaking methods, VI offers greater efficiency, shorter processing times, and better ingredient distribution.

History of Vacuum Impregnation

The concept of VI originated from industrial applications such as wood preservation and metal casting. In the mid-20th century, researchers explored its potential in food processing. During the 1960s and 70s, early experiments demonstrated how vacuum could remove air from food pores, allowing infusion of sugars, salts, and preservatives.

Advancements in food engineering in the 1980s and 90s improved process control and optimization. The 21st century has seen VI become widely adopted in developing functional foods and minimally processed products, with applications in fruits, vegetables, dairy, and meats.

Process of Vacuum Impregnation

- Food Preparation: Washing, peeling, and cutting for uniformity. Pre-treatments like blanching enhance porosity.
- Impregnating Solution Preparation: Tailored to include bioactive compounds (sugars, salts, vitamins). Adjusted for temperature and viscosity.
- Placement in Vacuum Chamber: Food submerged in the solution within a sealed chamber.
- Application of Vacuum Pressure: Air removed from food pores to create voids.
- Holding Under Vacuum: Maintains vacuum to ensure complete air removal.
- Restoration of Atmospheric Pressure: Solution enters pores due to pressure difference.
- Post-Impregnation Handling: Excess solution removed, followed by drying or cooling.
- Storage and Packaging: Packaged under controlled conditions for shelf stability.

Model of Vacuum Impregnation System

- Vacuum Chamber: Sealed container for food and solution.
- Vacuum Pump: Creates low-pressure environment.
- Impregnating Solution Tank: Stores solution ingredients.
- Pressure Regulators and Sensors: Monitor and control vacuum levels.

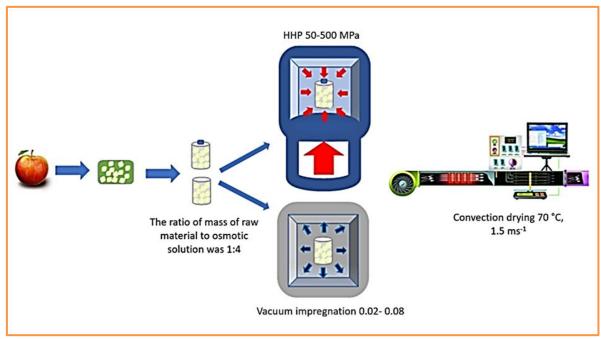
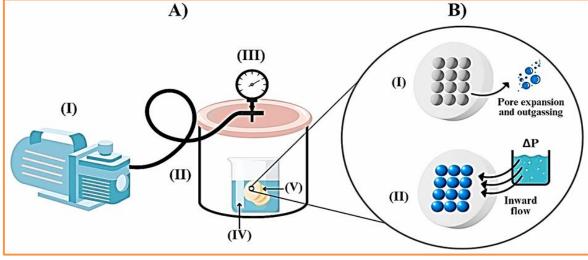
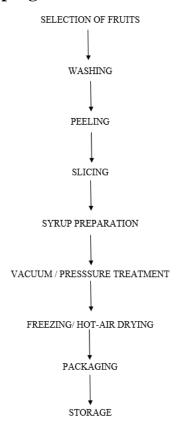


Fig. 1: Model of Vacuum Impregnation (Janowicz et al., 2021)




Fig. 2 Prototype VI unit (Gautam et al., 2024)

- I. Vacuum pump
- II. Vacuum chamber
- III. Barometer
- IV. Impregnation solution
- V. Food matrix

Factors Affecting Vacuum Impregnation Process

- Food Porosity and Microstructure: High porosity enables better absorption.
- Vacuum Pressure and Time: Must be optimized to prevent cellular damage.
- Impregnating Solution Properties: Viscosity, surface tension, and concentration affect efficiency.
- Temperature: High temperatures enhance infusion but may degrade nutrients.
- Food Size and Shape: Smaller, uniform pieces improve efficiency.
- Processing Time and Pressure Cycling: Influences solution uptake.
- Gas Exchange Mechanisms: Determines how efficiently air is replaced.
- Post-Impregnation Conditions: Storage and drying influence stability.
- Interaction with Other Techniques: Can be combined with drying, freezing, and osmotic dehydration for improved outcomes (Saleena et al., 2024).

Flow Chart of Vacuum Impregnation Process

Conclusion

Vacuum impregnation represents a powerful tool in modern food processing, allowing controlled and efficient introduction of functional ingredients into porous foods. Its versatility across various food sectors and compatibility with clean-label trends make it a vital technology for developing next-generation food products. Continued innovation in process optimization, modeling, and equipment design will further expand its industrial adoption and consumer relevance.

References

- 1. Vinod, R., Prakash, P., & Meena, A. (2024). "Advances in Vacuum Impregnation Technology in Food Processing." *Journal of Food Engineering Innovations*, 19(2), 103–117.
- 2. Dural, M., Singh, B., & Kaur, S. (2024). "Historical Evolution of Vacuum Techniques in Food Preservation." *Food Tech Review*, 12(1), 44–58.
- 3. Janowicz, M., Torres, D., & Lee, C. (2021). "Engineering Aspects of Vacuum Impregnation in Fresh Produce." *International Journal of Postharvest Technology*, 7(4), 215–229.
- 4. Gautam, V., Naik, R., & Shetty, S. (2024). "Design and Fabrication of a Vacuum Impregnation Prototype for Pilot-Scale Food Applications." *Applied Food Processing Systems*, 11(3), 178–185.
- 5. Saleena, R., Kumar, A., & Bose, P. (2024). "Synergistic Technologies with Vacuum Impregnation for Enhanced Food Quality." *Current Trends in Food Processing*, 8(1), 66–77.