

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in
[©]Agri Magazine, ISSN: 3048-8656

Enhancing Vegetable Value Chains: Strategies for Post-Harvest Loss Reduction and Nutritional Security

*Arepalli Dinesh Kumar¹ and Shashank K²

¹Extension Field Assistant, Godrej Agrovet Pvt.Ltd, Zaheerabad, Telangana, India ²M.Sc. Scholar, Division of Vegetable Science, ICAR-IARI, New Delhi, India *Corresponding Author's email: arepallidk@gmail.com

Vegetables are fundamental to nutritional security and public health due to their high content of vitamins, minerals, fiber, and bioactive compounds. Despite India's position as the second-largest vegetable producer globally (APEDA, 2023), post-harvest losses threaten both food availability and farmers' incomes. These losses, estimated at 25–30% (Jha et al., 2015), are caused by factors such as improper harvesting, lack of cold chains, suboptimal packaging, and inefficient transportation. With India's vegetable production reaching over 204.61 million tonnes (APEDA, 2023), minimizing post-harvest waste is crucial to meet Sustainable Development Goal 2 which aims to halve global food waste by 2030.

Keywords: Post-harvest management, vegetable processing, food security, drying technology, edible coatings, value addition, shelf life, cold chain logistics, minimal processing, sustainable agriculture

Causes of Post-Harvest Losses in Vegetables

Post-harvest deterioration arises due to high moisture content, soft tissue, and rapid metabolic activity in vegetables (FAO, 2016). Mechanical injuries during harvesting and transportation, microbial contamination, and physiological disorders exacerbate losses (Gustavsson et al., 2011). Moreover, packaging practices such as the use of jute sacks and open baskets expose produce to rough handling and bruising, reducing quality and marketability. The lack of grading, cold storage infrastructure, and refrigeration vehicles further aggravates spoilage (Kiaya, 2014).

Post-Harvest Technologies for Loss Mitigation

Cold Chain and Storage Innovations: Proper temperature and humidity management throughout the supply chain significantly extend vegetable shelf life (Nunes, 2008). While developed nations utilize refrigerated transport and cold storage, in India, affordable alternatives like Pusa Zero Energy Cool Chambers have shown promise (Chakraborty & Chattopadhyay, 2018). These passive cooling systems help retain quality in high-perishability vegetables without energy consumption, making them suitable for rural deployment.

Packaging Solutions: Innovative packaging materials like expanded polyethylene (EPE) and FlexfreshTM films enable modified atmospheric storage (Singh et al., 2022). For instance, broccoli stored at 3°C in FlexfreshTM pouches retained quality for 49 days (Singh et al., 2018). Similarly, ethylene-absorbing sachets in corrugated fiberboard boxes preserve bitter gourd quality during ambient storage (Belwal et al., 2023).

Edible Coatings and Shelf-Life Extension

Edible coatings serve as a biodegradable, natural barrier reducing moisture loss and oxidation (Mahajan et al., 2014). Chitosan, shellac, and carnauba wax have proven effective in preserving firmness, color, and nutritional quality in vegetables like eggplant, bell pepper,

AGRI MAGAZINE ISSN: 3048-8656 Page 204

and tomato (Ali et al., 2013; Singh et al., 2019). These coatings can also serve as carriers of antimicrobial and antioxidant compounds, further enhancing shelf stability.

Emerging Preservation Strategies

Hurdle Technology and Steeping Preservation

The hurdle concept combines sub-lethal preservation methods like mild heat, pH control, and preservatives to inhibit spoilage (Miller et al., 2013). Steeping preservation, involving blanching and brine-acid treatment with preservatives like potassium metabisulphite, effectively extends the shelf life of vegetables like cauliflower and pointed gourd (Singh & Singh, 2015).

Use of 1-Methylcyclopropene (1-MCP)

1-MCP delays ripening by inhibiting ethylene receptors, thus extending freshness. It is approved in over 50 countries and applicable via gaseous, aqueous, or microbubble treatment (Asrey et al., 2023).

Value Addition and Processing Technologies

Value addition through dehydration, fermentation, and minimal processing transforms perishable produce into high-demand products. ICAR-IIVR has commercialized technologies like bitter gourd chips and instant moringa soup mix to reduce waste and create market-ready products (Singh et al., 2015).

Drying Technologies

Drying is a cost-effective preservation technique that enhances shelf life and reduces bulk. Freeze drying offers premium quality but is energy-intensive, while hot air drying is widely used for its affordability. Hybrid methods, including osmotic dehydration and microwave drying, optimize quality and efficiency (Waghmare et al., 2023). These methods retain nutrients and flavor, with osmo-air drying yielding shelf-stable carrot, okra, and ivy gourd products (Sagar & Kumar, 2010).

Minimal Processing and Ready-to-Eat Products

Minimally processed vegetables provide fresh-like quality with enhanced convenience. Techniques include slicing, sanitizing, and packaging under modified atmosphere, combined with antimicrobial agents (Alegria et al., 2010). These products meet urban consumers' needs for health, safety, and speed. ICAR-IIVR's innovations such as instant bottle gourd kheer mix and dehydrated leafy vegetables have improved nutrition availability and economic returns. Ready-to-eat (RTE) products meet consumer demand for convenience and can be stored for extended periods without nutrient loss.

Future Prospects and Recommendations

The future of post-harvest management lies in integrated cold chain development, mechanization of sorting/grading, and widespread adoption of smart packaging. Start-up incubation, training of rural entrepreneurs, and public-private partnerships are vital to scale processing ventures. The vegetable sector holds vast potential in nutraceuticals and functional foods—areas aligned with global health trends.

Recent data (Ministry of Food Processing Industries, 2024) shows that only 10% of India's vegetable produce is processed, signifying vast untapped opportunity. Bridging this gap will improve farmers' income, reduce food waste, and contribute to national food security.

Conclusion

Effective post-harvest management and value addition can transform the vegetable sector into a resilient, income-generating ecosystem. Technological interventions such as cold storage, edible coatings, hurdle processing, and minimal processing are essential to reduce food loss and ensure food safety. Policy support, infrastructure investment, and capacity building will be key to unlocking India's vegetable processing potential.

AGRI MAGAZINE ISSN: 3048-8656 Page 205

References

- 1. Ali, A., Maqbool, M., Alderson, P. G., & Zahid, N. (2013). Effect of gum arabic as an edible coating on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage. *Postharvest Biology and Technology*, 76, 119–124. https://doi.org/10.1016/j.postharvbio.2012.09.011
- 2. APEDA. (2023). Fruits and Vegetables Statistics. Retrieved from https://apeda.gov.in/apedawebsite/six_head_product/FFV.htm
- 3. Asrey, R., Sharma, S., Barman, K., et al. (2023). Biological and postharvest interventions to manage ethylene in fruit: A review. *Sustainable Food Technology*. https://doi.org/10.1039/D3FB00037K
- 4. Belwal, P., Singh, A. K., Pal, A. K., et al. (2023). Effect of potassium permanganate on postharvest quality attributes of bitter gourd fruit. *Vegetable Science*, *50*(1), 39–45.
- 5. Chakraborty, I. V. I., & Chattopadhyay, A. (2018). Pre-and post-harvest losses in vegetables. In B. Singh, S. Singh, & T.K. Koley (Eds.), *Advances in Postharvest Technologies of Vegetable Crops*, 25–87.
- 6. FAO. (2016). The state of food and agriculture: Climate change, agriculture and food security. Rome: FAO.
- 7. Gustavsson, J., Cederberg, C., Sonesson, U., et al. (2011). *Global food losses and food waste*. FAO. http://www.fao.org/docrep/014/mb060e/mb060e.pdf
- 8. Jha, S. N., Vishwakarma, R. K., Ahmad, T., et al. (2015). Assessment of quantitative harvest and post-harvest losses of major crops and commodities in India. ICAR-CIPHET.
- 9. Mahajan, P. V., Caleb, O. J., Singh, Z., et al. (2014). Postharvest treatments of fresh produce. *Philosophical Transactions of the Royal Society A*, 372, 20130309.
- 10. Singh, S., Sharma, S., Panwar, S., Krishna, H., Singh, S. K., Bahadur, A., & Behera, T. K. (2024). Post-Harvest Management and Value Addition in Vegetable Crops. *Vegetable Science*, *51*(Special Issue), 34–42. https://doi.org/10.61180/vegsci.2024.v51.spl.04
- 11. Singh, S., Chaurasia, S. N. S., Sharma, S., et al. (2018). Influence of modified atmosphere packaging (MAP) on the shelf life and quality of broccoli during storage. *Journal of Packaging Technology & Research*, 2, 105–113.
- 12. Singh, S., & Singh, B. (2015). *Value addition of vegetable crops*. IIVR Technical Bulletin, 65, 1–61.
- 13. Waghmare, R., Kumar, M., Yadav, R., et al. (2023). Application of ultrasonication as pretreatment for freeze drying: An innovative approach for the retention of nutraceutical quality in foods. *Food Chemistry*, 404, 134571.

AGRI MAGAZINE ISSN: 3048-8656 Page 206