

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in
[©]Agri Magazine, ISSN: 3048-8656

Organic Weed Management in Conservation Agriculture

*Kowsalya V and Kamlesh Kumar

M.Sc. Scholar, Department of Agronomy, Sardarkrushinagar Dantiwada Agricultural University, Banaskantha, Gujarat, India

*Corresponding Author's email: kowsivelmurugan943@gmail.com

One of the biggest problems in conservation agriculture (CA) is still managing weeds, particularly in organic systems where synthetic herbicides are prohibited. An environmentally sound foundation for sustainable farming is provided by conservation agriculture, which is founded on the three concepts of crop rotation, permanent soil cover, and minimal soil disturbance. These methods, however, have the potential to drastically change weed dynamics. The incorporation of organic weed control techniques into CA frameworks is examined in this study, which also examines the effectiveness, drawbacks, and possible synergies of research-based techniques such crop rotation, mulching, cover crops, flame weeding, and mechanical instruments

Introduction

Weeds compete with crops for light, water, and nutrients, which makes them a serious danger to sustainable crop production. Globally, weeds can lower crop yields by as much as 34%, according to the Weed Science Society of America (WSSA, 2021). Because chemical herbicides are not used in organic farming, controlling weeds is expensive and time-

consuming. Weed management is made even more difficult by the limited tillage alternatives available when paired with conservation agriculture, which prioritizes soil health and little disturbance. CA techniques improve soil health and moisture retention, but they also provide an environment that specific weed species can flourish in. For organic weed control to be effective without sacrificing soil structure and biodiversity, a system-based approach is necessary.

Minimum or zero tillage; permanent organic soil cover, such as mulches or residues; and varied crop rotations are all components of conservation agriculture (FAO, 2017).

Weed dynamics under Conservation Agriculture

Less Tillage: Enhance the growth of perennial weeds like Cyprus rotundus, Cynodon dactylon and Convolvulus arvensis.

Permanent Soil Cover: Prevents photoblastic weed seeds germination

Crop rotation: It has the potential to lessen weed shift and disturb weed life cycles.

Organic Weed Management Strategies in CA

Crop Rotation and Diversity: Weed life cycles are disrupted by rotating crops with opposing life cycles, such as shallow-rooted-deep-rooted or cereals-legumes. Through nitrogen fixation and quick canopy closure, legumes can inhibit weed growth. According to

AGRI MAGAZINE ISSN: 3048-8656 Page 154

ICAR-IIFSR (2019), in North India, rotation of maize, wheat, and mung bean decreased *Phalaris minor* infestation by 70% when zero tillage was followed.

Cover Cropping: Cover crops like groundnut, cowpea, sunhemp, mustard supply organic matter, suppress weed growth by offering ground cover.

Natural Mulching: By lowering light and changing soil temperature, applying crop leftovers (straw, leaves, and as mulch physically suppresses weeds. In Punjab, paddy straw mulch decreased weed density in vegetable CA systems by 65%, according to Kumar *et al.* (2013).

Hand Weeding: It was helpful to manage annual and biennial weeds with shallow root. Done by wheel weeder and cono-weeder.

Flame Weeding (Technological Weed Control): A non-chemical method called propane flame weeding breaks down the cell membranes of early weed seeds. It could be used before to crop emergence. In organic no-till systems, flame weeding works well for broadleaf weeds, although it is constrained by timing sensitivity and fuel expense.

Bio-herbicides and Allelopathy: Allelopathic substances released by certain cover crops (Peas root exudates shown allelopathic on *Chenopodium album* and Sweet potato allelopathic on *Cyperus species*) prevent weeds from germinating. According to ICAR-NIASM research, benzoxazinoids detected in rye mulch have herbicidal effects on Amaranthus species. As part of integrated weed management, bio herbicides (such as Phoma and *Colletotrichum* species) are being produced; however, research is still ongoing to determine their effectiveness in field settings.

Organic Weed Control Difficulties Under CA

- Weed Shifts: Perennial weeds and shift weed spectrum may be favored by surface planting and little tillage.
- Labor Requirements: Weeding by hand requires a lot of work, particularly for crops with a high density.
- **Slow Impact**: Perennial weed banks are more slowly suppressed by organic means.
- **Knowledge and Skill Gaps**: Farmers need technical instruction on the coordination and timing of different organic tools.

CA's Integrated Framework for Organic Weed Management

Integrated Organic Weed Management Framework: Planning varied crop rotations, establishing seasonal cover crops, applying high-biomass mulches after harvest, using intermittent shallow mechanical weeders, utilizing organic compost and biofertilizers to increase crop vigor, and scouting and manually removing problematic weeds early are all components of an efficient organic weed management system. By integrating these strategies zone-specifically, weed pressure can be sustainably reduced by 60-80%.

Research Evidence and Case Studies

Location	Practice	Result	Reference
Punjab	Rice straw mulch in CA vegetables	65% weed reduction	Kumar <i>et al</i> . (2013)
Bihar	Green manuring with dhaincha	Reduced annual weeds by 55%	ICAR-RCER
Uttar Pradesh	Flame weeding + cowpea cover	Effective on Parthenium	ICAR-IARI (2021)
USA	Vetch and rye cover crop	Reduced weed emergence by 80%	Teasdale <i>et al</i> . (2007)

Conclusion

In conservation agriculture, managing organic weeds necessitates a comprehensive and indepth strategy. Farmers can successfully suppress weeds using mechanical, biological, and cultural methods, even while chemical herbicides are forbidden. An organic CA toolkit must include mulching, cover crops, varied rotations, and prompt interventions. Future studies

AGRI MAGAZINE ISSN: 3048-8656 Page 155

must concentrate on low-disturbance tools appropriate for smallholders, cost-effective bioherbicides, and region-specific weed flora. Organic CA systems can increase output by combining these techniques without sacrificing ecosystem services or soil health.

References

- 1. FAO. (2017). Conservation Agriculture. www.fao.org/conservation-agriculture
- 2. Teasdale, J. R. (2007). "Cover crop residues and weed management in organic systems" *Agronomy Journal*, 99 (5), 1251–1256.
- 3. Kumar, V. (2013). "Effect of paddy straw mulch on weed suppression and crop productivity" *Indian Journal of Agronomy*, 58 (3), 293–297.
- 4. ICAR-IIFSR. (2019). Annual Report of Integrated Farming Systems Research.
- 5. Bond, W., and Grundy, A. C. (2001). "Non-chemical weed management in organic farming systems." *Weed Research*, 41(5), 383–405.
- 6. Elliott, M. (2021). "Mechanical weeding in reduced-tillage systems: trade-offs and design" *Renewable Agriculture and Food Systems*.
- 7. Derksen, D. A. (2002). "Weed dynamics under conservation tillage" *Weed Science*, 50(**5**), 576–584.
- 8. Meena, R. S (2021). p.499 Agronomy *facts for competitions*: Forms of Allelopathic Interactions. Jain Brothers.

AGRI MAGAZINE ISSN: 3048-8656 Page 156