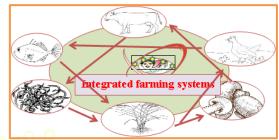


AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

**Open Comparison of Com


Integrated Farming Systems for Livelihood Security across India's Agro-Climatic Zones

Kamlesh Kumar and *Kowsalya V

M.Sc. Scholar, Department of Agronomy, Sardarkrushinagar Dantiwada Agricultural University, Banaskantha, Gujarat, India

*Corresponding Author's email: <u>kowsivelmurugan943@gmail.com</u>

This article describes the strategic role of Integrated Farming Systems (IFS) in enhancing livelihood security across India's varied agro-ecological zones, highlighting successful zone-specific models, benefits for smallholders, and the enabling conditions required for wider adoption. With India's diverse agro-climatic regions facing increasing pressures

from climate change, resource depletion, and farm income instability, IFS offers a holistic approach to agricultural sustainability by combining various complementary farming components (crops, livestock, aquaculture, horticulture, and agroforestry) into a unified system.

Introduction

Small and marginal farmers make up the majority of farmers in India, and they frequently use single cropping systems that are susceptible to weather, pests, and changes in market prices. According to the Ag Census, 2015–16, over 85% of Indian farmers work on holdings smaller than 2 hectares, and mono-cropping systems usually fall short in terms of offering both food diversification and economic security. Integrated Farming Systems (IFS) offer a workable solution to this problem. By integrating several businesses-including horticulture, dairy, fisheries, poultry, and crops-IFS improves on-farm resource utilization, lessens reliance on outside inputs, and provides a variety of revenue and dietary options. IFS models customized for certain agro-climatic zones have been created and validated by a number of State Agricultural Universities (SAUs) and Indian Council of Agricultural Research (ICAR) institutions.

2. Components and Concept of Integrated Farming Systems

In order to reduce waste and maximize resource efficiency, IFS encourages a synergistic approach in which the outputs of one component are used as inputs for another. IFS's essential elements usually consist of:

- Crop cultivation (cereals, legumes, oilseeds, vegetables)
- Horticulture (fruits, medicinal and aromatic plants)
- Dairy or small ruminants (cattle, goats, sheep)
- Poultry and ducks
- Fisheries and aquaculture
- Agroforestry and silvipasture systems
- Apiculture, sericulture, mushroom production
- Bio-fertilizer, compost, and biogas units

AGRI MAGAZINE ISSN: 3048-8656 Page 151

Higher agricultural productivity, more jobs, and improved resilience to outside shocks are the outcomes of this systems-based strategy.

Agro-Climatic Adaptation of IFS Models in India

Western Himalayan Zone Model: Agroforestry + Sheep/goat husbandry + Mixed Cropping + Apple or Temperate Fruits

Justification: Horticulture and animal husbandry are perfect for steep terrains and sparsely available flat ground.

Impact: Using orchard-livestock systems, ICAR-VPKAS estimates income gains of 40-50%.

The Eastern Himalayan Zone Model: Backyard Horticulture + Fish + Poultry + Rice

Justification: Waterlogged soils and heavy rains are perfect for integrated rice-fish cultivation.

Impact: When compared to rice mono-cropping, ICAR-NEH discovered returns that were 2.5 times greater.

Indo-Gangetic Plains

Model: Vermicompost + Rice/Wheat + Dairy + Mushroom

Justification: Composting and livestock lower the need for fertilizer, while rich soils enable intense crops.

Impact: According to ICAR-IARI studies, farmers save 25–30% on chemical inputs.

Arid and Semi-Arid Zones

Model: Agroforestry (*Prosopis*, neem) + Goat farming + millets (bajra)

Justification: Low-rainfall regions are ideal for hardy animals and crops.

Impact: Compared to solitary cropping in arid conditions, IFS enhanced income by 60%.

Central Plateau and Hills

Model: Minor millets + apiculture + poultry + pulses

Justification: Diverse, low-input systems are advantageous in rainfed areas.

Impact: 40% more agriculture jobs and improved family nutrition.

Coastal and Island Zones

Model: Poultry + Vegetables + Fisheries + Coconut

Justification: Perennial crops and water farming are supported by coastal ecology. **Effect:** ICAR-CPCRI shown that using coconut-based IFS increased household income by two to three times.

IFS's Contribution to Improving Livelihood Security

Generating Income from Multiple Sources: IFS ensures financial stability by generating revenue from multiple businesses. Diversified systems provide two to three times as much revenue than monoculture farms, according to studies (ICAR-AICRP on IFS, 2021). Self-Sustained Nutrition: IFS addresses the nutritional shortages prevalent in rural diets by incorporating milk, eggs, veggies, and fish.

Effective Use of Resources: Recycling animal manure and crop residues lowers input costs and enhances nutrient cycles.

Risk Mitigation and Climate Adaptation: Diversified systems spread risk; a crop's failure in one area could be offset by its success in another.

Sustainability of the Environment: IFS lowers farming's environmental impact, increases biodiversity, and raises organic matter levels.

Integrated Farming Systems Scaling Challenges

- Fragmented Landholdings: It could be difficult for small farms to house every business.
- Initial Investment: Upfront funds are needed for the construction of ponds, composting facilities, and livestock shed infrastructure.
- Knowledge and Skill Gaps: Many farmers are not adequately trained to handle a variety of systems.
- Market Access: Inadequately structured supply chains for a variety of goods, such as fish, eggs, milk, or mushrooms.

AGRI MAGAZINE ISSN: 3048-8656 Page 152

Policy Recommendations and Future Directions

Extension and Training: Encourage KVK-led instruction on IFS elements. **Research and Validation:** Encourage SAUs and ICAR institutions to create site-specific IFS models.

Financial Incentives: Provide finance, insurance, and subsidies for IFS infrastructure. **Marketing Support:** Establish value chains for smallholders generating a range of IFS outputs.

Final thoughts

Boundary plantations serve as a fixed deposit for the future, and an appropriate IFS can efficiently meet the needs of farm households for food, fodder, fiber, fuel, and fertilizer. The best example of using human resources on a farm is the IFS model, which can efficiently use the free time of farm workers all year long. In addition to reducing reliance on arhatiyas, IFS can offer returns all year long, protecting against price volatility. IFS is a solution to every issue because of its appropriate interactions (waste of one organization - best for another enterprise).

References

- 1. ICAR-AlCRP (2021). Annual Report of All India Coordinated Research Project on Integrated Farming Systems.
- 2. Planning Commission (1989). Agro-Climatic Regional Planning in India.
- 3. ICAR-Indian Agricultural Research Institute (2018). Efficient Resource Use in Integrated Systems.
- 4. ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora. Himalayan Integrated Farming Systems Models.
- 5. ICAR Research Complex for North East Hilly Region (2020). Rice-Fish-Poultry Systems.
- 6. ICAR-Central Plantation Crop Research Institute. Homestead Farming Models for Coastal Zones.

AGRI MAGAZINE ISSN: 3048-8656 Page 153