

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in
[©]Agri Magazine, ISSN: 3048-8656

Sustainability through Natural Farming: The Agronomic Path Forward

*Kowsalya V and Kamlesh Kumar

M.Sc. Scholar, Department of Agronomy, Sardarkrushinagar Dantiwada Agricultural University, Banaskantha, Gujarat, India

*Corresponding Author's email: <u>kowsivelmurug</u>an943@gmail.com

The global search for sustainable farming alternatives has accelerated due to the worsening environmental catastrophe and declining soil quality brought on by intensive chemical agriculture. A potential route is provided by natural farming, which is defined by ecologically sound methods and little external input. This article focuses on the ways that certain agronomic practices, like crop rotation, mulching, intercropping, and bio-inoculants, might improve the sustainability of natural farming systems. By combining these methods, long-term productivity is ensured, biodiversity is increased, input costs are decreased, and soil and water conservation is improved.

1. Introduction

Despite producing more food, modern agriculture has seriously harmed the ecosystem. According to the FAO (2017), heavy tillage, chemical inputs, and monoculture practices are mostly to blame for the moderate to severe degradation of about 33% of the world's soils. A paradigm changes in favour of environmentally friendly substitutes, such as natural farming, is required to address these issues. The core idea of Subhash Palekar's natural farming philosophy is to cultivate in balance with the environment. It does not require synthetic agrochemicals and is based on inexpensive, locally available inputs. Natural farming is scalable and resilient when combined with tried-and-true agronomic techniques to create sustainable agriculture. Key elements of natural farming, a sustainable agricultural method that stresses cooperating with nature rather than opposing it, are seen in the image.

The components of natural farming are:

Beejamrut: This is the process of treating seeds with mixtures made from lime, urine, and cow dung. This method is thought to shield seedlings from infections that are transmitted through the soil and encourage rapid growth.

Jeevamrut: This is a microbial mixture that is put to the soil to increase its fertility and encourage healthy microbial activity. It is created from cow dung, cow urine, pulse flour, and jaggery. It provides nutrients and serves as a natural soil conditioner. **Mulching**: It is the process of covering the soil with different organic resources, such crop biomass, tree leaves, or other plant leftovers. Mulching inhibits weed development, controls soil temperature, preserves soil moisture, and enriches the soil when organic matter breaks down. Additionally, it helps to establish a microclimate that is conducive to soil organisms.

Whapasa: The technique of activating earthworms in the soil to produce water vapour condensation is known as whapasa. In essence, it encourages a healthy, porous soil structure

in which earthworm activity improves water retention and aeration, maximising plant moisture availability. **Plant Protection:** Without using artificial chemicals, natural farming uses biological mixtures to prevent and manage herbivorous plants, diseases, and pests.

AGRI MAGAZINE ISSN: 3048-8656 Page 148

Additionally, these organic preparations help to increase soil fertility.

Together, these elements make up a comprehensive farming strategy that aims to provide nutritious food, restore soil health, minimise foreign inputs, and preserve biodiversity. This approach is frequently linked to methods such as Zero Budget Natural Farming (ZBNF), which gained popularity in India and aims to reduce the need for costly chemical pesticides and fertilisers, thereby increasing the economic viability of farming for small-scale farmers and fostering ecological balance.

Fundamentals of Natural Farming

There are four unchangeable principles that natural farming follows:

No Tillage: The natural structure and microbiological life of the soil are preserved because it is not disturbed.

No Synthetic Fertilizers: Leguminous green manures, cow dung slurry, and composts provide nutrients.

No Synthetic Pesticides: Botanical preparations and ecological balance are used to manage pests and diseases.

No Weeding by Disturbance: Rather than being mechanically removed, weeds are controlled by natural suppression techniques like mulching.

Natural Farming with Agronomic Interventions: Mulching is the process of applying organic materials, such as straw or crop leftovers, to the soil. It improves microbial activity, stabilizes soil temperature, inhibits weed development, and conserves moisture. Additionally, it promotes the accumulation of organic matter and lessens soil erosion.

Crop Diversification and Rotation: Crop rotation keeps pest and disease populations from growing. By switching between crops with deep roots and those with shallow roots, it also increases soil fertility. Legumes reduce the demand for external fertilizer inputs by fixing atmospheric nitrogen.

Companion planting and intercropping: When several crops are planted together, pest outbreaks are decreased and land use efficiency is maximized. For instance, growing mustard alongside garlic or legumes naturally lowers aphid infestation while simultaneously increasing output.

Bio-inoculant Use: Combinations of cow dung, urine, and jaggery, such as Jeevamrutha, Beejamrutha, and Panchagavya, increase microbial activity, facilitate nutrient cycling, and strengthen plant resistance.

Benefits to the Environment and Economy

Improving Soil Health: It has been discovered that natural farming methods enhance aggregation, boost microbial richness, and raise soil organic carbon. According to ICAR (2019), natural farming practices can increase soil quality by up to 30%.

Efficiency of Water: Arid and semi-arid environments especially benefit from practices like mulching and little tillage, which lower evaporation losses and hence cut irrigation demand by 30 to 50%.

Preservation of Biodiversity: Natural farming promotes a varied ecology of bacteria, beneficial insects, and plants that help maintain ecological balance and decrease pests. **Lower Expenses and Higher Profits:** Farmers save a lot of money on pesticides and fertilizers because synthetic inputs are no longer used. According to a RySS (2020) study conducted in Andhra Pradesh, farmers who used natural farming practices saw net returns that were 22–37% more than those who used conventional techniques.

Challenges and Recommendations

Despite its benefits, natural farming faces the following constraints:

Yield Reduction During Transition: Farmers may initially see lower yields

Knowledge Gaps: Many farmers lack training in natural farming techniques

Market Access: Premium pricing is hampered by the lack of certification systems and niche markets for naturally grown produce

AGRI MAGAZINE ISSN: 3048-8656 Page 149

Policy Recommendations: Government-led capacity building programs; Transition subsidies or incentives for two to three years; Institutional support for certification, storage, and marketing.

Conclusion

A revolutionary change in agricultural thinking, natural farming balances ecological stewardship with productivity. When combined with specific agronomic techniques, it provides a feasible route to sustainable food systems. Its broad adoption in the future will depend on a trifecta of institutional support, grassroots awareness, and evidence-based research.

References

- 1. Bishnoi, S., Bhadu, K., Rathore, R. S., and Shekhawat, P. S. (2023). Jeevamrut and Panchagavya's Consequences on Growth, Quality and Productivity of Organically Grown Crops: A Review. In *CABI Digital Library*.
- 2. FAO. (2017). The future of food and agriculture Trends and challenges. Rome: Food and Agriculture Organization.
- 3. Islam, A., and Das, S. (2022). "Astras" for Plant Protection in Organic Farming. Research Gate. https://www.researchgate.net/publication/375895965_Astras for Plant Protection in Organic Farming
- 4. Indian Council of Agricultural Research (ICAR). (2019). Natural Farming: An Eco-Friendly Agricultural Practice
- 5. Khan, A. H., Kumar, R., Singh, Y. V., and Pathak, S. (2022). Zero Budget Natural Farming: A way Forward towards Sustainable Agriculture. *Current Journal of Applied Science and Technology*, 41(13), 31-43.
- 6. Lakhani, H., and Bodar, N. (2025). Natural Farming and Mulching Synergies: Enhancing Soil Health and Crop Productivity in Indian Agroecosystems. *International Journal of Current Microbiology and Applied Sciences*, 14(6),
- 7. Mohanty, M., Pradhan, S. S., Mohapatra, B. K., Mohanty, S., and Jena, B. (2023). Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields. *Agriculture*, 13(1), 196.
- 8. Palekar, S. (2016). The Philosophy of Spiritual Farming. Subhash Palekar Publications.
- 9. Pramanick, M., Mitra, D., Roy, D., Chaudhuri, S., Nayak, C., and Ray, K. (2023). Microbiological properties of Beejamrit, an ancient Indian traditional knowledge, uncover a dynamic plant beneficial microbial network. *World Journal of Microbiology and Biotechnology*, 39, Article number 223.
- 10. Rythu Sadhikara Samstha (RySS). (2020). Evaluation Report on Zero Budget Natural Farming (ZBNF) in Andhra Pradesh.
- 11. Sharma, A. K. (2001). A Handbook of Organic Farming. Agrobios.
- 12. Singh, K., Kumar, S., and Tomar, S. K. (2024). Beejamrit: An organic seed treatment solution. *Agriculture Journal World*, 3(10), 32-34.

AGRI MAGAZINE ISSN: 3048-8656 Page 150