

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

Agri Magazine, ISSN: 3048-8656

Buzzing, Boring, and Burrowing: The Insect Threats Facing Indian Coffee Farms

*Chinmay Oshimath¹, Chetan Veeranagouda Marigoudar² and Basavakiran¹
¹Department of Agricultural Entomology, College of Agriculture, UAS, GKVK,
Bengaluru–560065, Karnataka, India
²Department of Apiculture, College of Agriculture, UAS, GKVK,
Bengaluru–560065, Karnataka, India
*Corresponding Author's email: chinmaymoshimath@gmail.com

India's coffee plantations, primarily in Karnataka, Kerala, and Tamil Nadu, are increasingly threatened by a complex of insect pests that compromise both yield and bean quality. Key pests such as the Coffee Berry Borer (*Hypothenemus hampei*), White Stem Borer (*Xylotrechus quadripes*), Red Coffee Borer (*Zeuzera coffeae*), and the Ambrosia Beetle complex (*Xylosandrus spp.*) attack coffee at various growth stages, often resulting in severe economic losses. Climate change has further intensified pest dynamics by altering their range and activity patterns. Integrated Pest Management (IPM)—combining monitoring, cultural practices, biological controls, and selective chemical use—emerges as a sustainable strategy to combat these pests. Enhancing ecosystem health and promoting agroecological resilience are critical for protecting India's coffee heritage and the livelihoods of its growers.

Keywords: Coffee insect pests, IPM, Climate change, Pest dynamics, Agroecological resilience

Introduction

Indian coffee farms—nestled amid the rolling hills of Karnataka, Kerala, and Tamil Nadu—are renowned for producing high-quality coffee beans. Yet, underneath the dense shade of native trees and amidst meticulously cared-for plantations, a hidden battle rages. A diverse set of insect pests—buzzing, boring, and burrowing—threaten the productivity and livelihoods of millions of Indian coffee growers by attacking plants at multiple stages of their lifecycle. Understanding these threats is crucial for developing sustainable, effective management strategies.

Major Insect Threats

1. Coffee Berry Borer (Hypothenemus hampei)

The coffee berry borer is regarded as the most devastating pest for coffee globally and has become increasingly problematic in Indian plantations. This small beetle bores into the coffee berry to lay its eggs, where larvae feed on the bean itself, leading to direct yield losses and reduced bean quality. The berry borer can cause up to 20% crop loss and reduce economic value by up to 40% if not managed adequately (Benavides et al., 2012).

2. White Stem Borer (*Xylotrechus quadripes*)

The white stem borer is one of the most persistent and destructive pests in Indian coffee regions, especially on Arabica plants. Adults bore into the main stem, where larvae tunnel through the plant tissue, leading to wilting, stem breakage, and eventual plant death. This pest has proven difficult to control, with chemical, biological, and cultural methods all being employed with varying success. Recent studies indicate that integrated management—

AGRI MAGAZINE ISSN: 3048-8656 Page 726

including the timing of chemical and bio-agent sprays—can significantly reduce borer populations (Manikandan et al., 2019), underscoring the need for multi-pronged approaches.

3. Red Coffee Borer (Zeuzera coffeae)

This moth's larvae burrow into coffee stems and branches, causing similar symptoms as the white stem borer—wilting, dieback, and breakage. The population dynamics of boring pests like *Zeuzera* spp. are influenced by factors such as plantation age, location, and host clonal differences (Suheri et al., 2022). Older plantations tend to suffer more severe attacks, highlighting the necessity of regular rejuvenation practices.

4. Ambrosia Beetle Complex (Xylosandrus crassiusculus)

Recent studies have documented the increasing incidence of ambrosia beetles attacking coffee and related crops in southern India, often in association with fungal pathogens. These pests exploit wounds or stressed plants, introducing symbiotic fungi that further damage the host. Symbiotic relations with other insects, such as mirid bugs, can exacerbate outbreaks and complexity in pest management (Thube et al., 2022).

Secondary and Emerging Threats

- **Leaf Miners**: Leaf-mining larvae from various insect groups feed between the epidermal layers of leaves, causing "mines" that reduce photosynthesis and overall vigor.
- **Burrowing Soil Pests**: Soil-dwelling larvae and beetles damage roots and stems, impairing water and nutrient uptake and increasing susceptibility to secondary infections.

Climate Change and Pest Dynamics

Climate change is altering pest and pathogen ranges, influencing both the timing and severity of outbreaks. Warmer temperatures and varying rainfall patterns often favor pest multiplication and spread, with some species expanding into new territories or shifting their seasonal activity. Intensified pest pressures demand adaptive management strategies and more resilient farming systems (Suheri et al., 2022).

Pest Management Strategies

Integrated Pest Management (IPM)

Combining cultural, biological, and chemical controls is recognized as best practice for sustainable pest suppression. Key methods include:

- **Regular Monitoring and Early Detection:** Early recognition of pest outbreaks enables targeted interventions and reduces reliance on broad-spectrum insecticides (Benavides et al., 2012).
- **Shade and Agroforestry:** Maintaining optimal shade from diverse native trees supports beneficial predators and reduces pest population (Suheri et al., 2022).
- **Biological Controls:** Use of natural enemies such as parasitoids, predatory ants, and entomopathogenic fungi (like *Beauveria bassiana*) shows promise in suppressing major coffee pests without harming beneficial species.
- Chemical Controls: Judicious, timed use of insecticides remains necessary in severe outbreaks but must be balanced to prevent resistance development and negative environmental impacts (Manikandan et al., 2019).

Soil and Ecosystem Health

Healthy soils rich in organic matter and beneficial microbes confer resilience against many pests and diseases, supporting plant immunity and natural pest antagonists (Lamond et al 2016).

Socioeconomic Impact and Future Outlook

Insect pests are not just biological challenges—they threaten farmers' livelihoods, with the cost of pest outbreaks and management running into millions of dollars annually. Adoption of IPM and agroecological practices can enhance farm resilience while reducing input costs and environmental footprints (Benavides et al., 2012). Ongoing research into biological controls, pest ecology, and climate impacts is essential to refine and extend these strategies across

AGRI MAGAZINE ISSN: 3048-8656 Page 727

India's diverse coffee landscapes (Card et al., 2016). Would you like a deeper exploration of any particular insect, management practice, or the influence of climate change on pest incidence in Indian coffee farms? Or would you like me to search for more details about innovative biotechnological solutions or recent field trials in specific Indian states?

References

- 1. Benavides, Pablo, Gngora, Carmenza E., and Bustillo, Alex E. (2012) 'IPM Program to Control Coffee Berry Borer Hypothenemus hampei, with Emphasis on Highly Pathogenic Mixed Strains of Beauveria bassiana, to Overcome Insecticide Resistance in Colombia', None. Available at: https://doi.org/10.5772/28740 [Accessed 30 July 2025].
- 2. Manikandan, K, Muthuswami, M., Chitra, N., and Ananthan, M. (2019) 'Management of Coffee White Stem Borer Xylotrechus quadripes (Chevrolat, 1863) (Coleoptera: Cerambycidae) in the Lower Pulney Hills, India', Excellent Publishers. Available at: https://doi.org/10.20546/ijcmas.2019.806.203 [Accessed 30 July 2025].
- 3. Suheri, Mohamad, Haneda, Noor Farikhah, Anwar, Ruly, JUNG, YOONHWA, SUKENO, SHINICHI, and PARK, JONGMYUNG (2022) 'Population dynamics of Zeuzera spp. (Lepidoptera: Cossidae) on Eucalyptus pellita plantation in Central Kalimantan, Indonesia', MBI & UNS Solo. Available at: https://doi.org/10.13057/biodiv/d231131 [Accessed 30 July 2025].
- 4. Thube, Shivaji Hausrao, Pandian, R. Thava Prakasa, Josephrajkumar, A., Bhavishya, A., Kumar, B. J. Nirmal, Firake, D. M., Shah, Vivek, Madhu, T. N., and Ruzzier, Enrico (2022) 'Xylosandrus crassiusculus (Motschulsky) on Cocoa Pods (Theobroma cacao L.): Matter of Bugs and Fungi', Multidisciplinary Digital Publishing Institute. Available at: https://doi.org/10.3390/insects13090809 [Accessed 30 July 2025].
- 5. Lamond, Genevieve, Sandbrook, Lindsey C., Gassner, Anja, and Sinclair, Fergus (2016) LOCAL KNOWLEDGE OF TREE ATTRIBUTES UNDERPINS SPECIES SELECTION ON COFFEE FARMS', Cambridge University Press. Available at: https://doi.org/10.1017/s0014479716000168 [Accessed 30 July 2025].
- 6. Card, Stuart D., Johnson, Linda J., Teasdale, Suliana, and Caradus, J. R. (2016) 'Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents', Oxford University Press. Available at: https://doi.org/10.1093/femsec/fiw114 [Accessed 30 July 2025].

AGRI MAGAZINE ISSN: 3048-8656 Page 728