

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

**OAgri Magazine, ISSN: 3048-8656

Aquatic Pollution Reduction Using Organic Biofilters *Chetan DM

Department of Aquaculture, College of Fisheries, Mangalore, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, India
*Corresponding Author's email: chetandm05@gmail.com

Aquatic ecosystems are facing increasing levels of pollution due to industrial discharge, agricultural runoff, and domestic effluents. Organic biofilters offer an eco-friendly and sustainable approach to reduce pollutants in water bodies. These biofilters use natural materials such as coconut husk, rice straw, peat, compost, and microbial consortia to remove contaminants and improve water quality.

Objectives

- To study the effectiveness of organic biofilters in reducing aquatic pollution.
- To understand the mechanisms involved in pollutant removal.
- To evaluate different types of organic materials used as biofilters.
- To recommend sustainable strategies for aquaculture and water body management.

Types of Organic Biofilters

- a) Coconut Husk Filters
 - High lignin content and porous structure help in adsorption.
- b) Rice Straw Biofilters
 - Acts as a carbon source and substrate for microbial colonization.
- c) Peat-Based Filters
 - Rich in humic substances, excellent for heavy metal removal.
- d) Compost and Vermicompost Filters
 - Contain beneficial microbes aiding in biodegradation.
- e) Coir-Pith and Activated Carbon Combinations
 - Used for removing organic matter and toxins.

Mechanisms of Pollution Reduction

- Adsorption of heavy metals and nutrients onto organic matter.
- Microbial degradation of organic pollutants (BOD, COD).
- Nitrification and denitrification by biofilm bacteria.
- Filtration of suspended solids and particulate matter.

Application in Aquaculture and Wastewater Management

- In biofloc and RAS systems to control ammonia and nitrate levels.
- In effluent treatment plants to purify discharge before release.
- In constructed wetlands as part of eco-engineering solutions.
- In community-scale water treatment for rural aquaculture zones.

Advantages of Organic Biofilters

- Cost-effective and locally available materials.
- Biodegradable and environmentally friendly.
- Supports microbial biodiversity.
- Can be integrated into existing water treatment setups.

AGRI MAGAZINE ISSN: 3048-8656 Page 618

Limitations and Challenges

- Clogging and maintenance issues.
- Performance variability due to climatic conditions.
- Limited lifespan of organic materials.
- Need for periodic replacement or rejuvenation.

Future Prospects

- Use of genetically enhanced microbial consortia.
- Integration with IoT-based water quality monitoring.
- Development of hybrid filters combining organic and synthetic media.
- Policy support for green water treatment technologies.

Conclusion

Organic biofilters represent a sustainable solution to aquatic pollution. By combining natural filtration and microbial degradation, they can significantly reduce pollutants in water systems and support cleaner aquaculture practices. Continued research and policy support can help scale up their adoption in both rural and industrial settings.

References

- 1. Vymazal, J. (2011). Constructed wetlands for wastewater treatment.
- 2. FAO (2020). Biofilters in aquaculture systems.
- 3. Ramesh, K. et al. (2018). Use of natural materials for pollution control.
- 4. APHA (2017). Standard methods for water and wastewater analysis.

AGRI MAGAZINE ISSN: 3048-8656 Page 619