

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

Agri Magazine, ISSN: 3048-8656

Recent Advances in Introgression of Shelf Life Genes in Cucurbits

*B T Sumanth, Dore Uppar, Ajith Kumar, Ramesh, Joginder Singh and Ambrish S University of Horticultural Sciences, Bagalkot, Karnataka, India *Corresponding Author's email: sumanthbt44@gmail.com

Cucurbits— comprising crops like cucumber, watermelon, muskmelon, pumpkin, bottle gourd, and bitter gourd—are key players in global vegetable production. They are rich in vitamins, minerals, and water content, making them vital for nutrition. However, they suffer from a common drawback: short shelf life. Post-harvest losses, primarily due to softening, spoilage, or microbial attack, are alarmingly high—especially in hot and humid climates like India. Reducing these losses enhances farmer income, food availability, and sustainability. One of the most promising strategies to combat this challenge is the introgression of shelf-life-related genes—bringing in useful genes from wild relatives or other varieties into elite cultivars using modern tools.

Understanding Shelf Life in Cucurbits

Shelf life refers to the period during which a fruit remains acceptable for consumption in terms of texture, flavor, and appearance. In cucurbits, shelf life is influenced by fruit firmness, respiration rate, ethylene production, cuticle characteristics, water loss, and microbial resistance. Transferring these traits into elite lines is a core breeding goal.

Traditional Breeding for Shelf Life

Conventional breeding has improved shelf life by selecting for firmness and rind thickness. Examples include Pusa Vishesh cucumber and Arka Suryamukhi pumpkin. However, it is time-consuming and may bring unwanted traits along with the desired ones.

Molecular Markers and MAS

Marker-Assisted Selection (MAS) uses DNA markers linked to desirable traits. In cucurbits, SSRs, SNPs, and QTLs help track shelf-life traits such as fruit firmness, ethylene synthesis, and rind toughness. These tools improve selection accuracy and reduce breeding time.

Genomic Introgression and Backcrossing

Introgression introduces genes from wild or landrace donors into commercial varieties. Marker-assisted backcrossing (MABC) has helped introgress shelf-life traits from wild melon and watermelon into elite lines while retaining commercial qualities.

Genetic Engineering and Genome Editing

Genome editing tools like CRISPR/Cas9 and RNAi allow precise changes in shelf-life genes. In cucurbits, editing ethylene biosynthesis and cell wall-degrading enzymes has led to firmer, longer-lasting fruits. Regulatory challenges remain, but progress is significant.

Case Study: Shelf-Life Improvement in Muskmelon

ICAR-IARI researchers have downregulated the CmACO1 gene and targeted polygalacturonase to slow ripening. Resulting lines have shown a 40% increase in shelf life.

AGRI MAGAZINE ISSN: 3048-8656 Page 590

Role of Post-Harvest Physiology and Biochemistry

Combining gene introgression with calcium treatments, anti-microbial coatings, and cold chain improvements amplifies shelf-life benefits. Some genes even enhance calcium uptake.

Integration with Participatory Breeding

Participatory varietal selection ensures farmer-preferred traits like long shelf life, resistance to rot, and market readiness. Storability score is becoming a selection index.

Emerging Tools and Databases

Tools like GWAS, pan-genomes, speed breeding, and databases like CuGenDB support faster, data-driven introgression. These innovations are accelerating cucurbit improvement.

Future Prospects and Challenges

Future breeding must combine shelf life with nutrition, yield, and stress resistance. Genome editing may lead the way, but policy clarity and consumer acceptance are vital.

Conclusion

Introgressing shelf-life genes in cucurbits is vital for reducing post-harvest losses and increasing profits. The integration of genomics, biotechnology, and participatory breeding marks a new era in cucurbit improvement—one where freshness, flavor, and firmness go hand in hand.

AGRI MAGAZINE ISSN: 3048-8656 Page 591