

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

Agri Magazine, ISSN: 3048-8656

Artificial Intelligence (AI) vs Insect Pests: Revolutionizing Agriculture for the 21st Century

Varun Y B, Priya Bhusaraddi and *Kiran K N

ICAR- Indian Institute of Horticultural Research, Bengaluru-560089, Karnataka, India *Corresponding Author's email: geetharaj.kiru@gmail.com

In recent years, the world's farmers and agricultural scientists have found themselves on the frontline of a new, rapidly evolving battleground: the fight against insect pests. According to the Food and Agriculture Organization (FAO), insect pests are responsible for destroying 30 to 40 percent of global crop production annually, leading to devastating losses for farmers and contributing to food insecurity, economic hardship, and environmental damage. With the growing complexity of modern agriculture-marked by climate change, globalized trade, and shifting pest behaviors-conventional pest control methods are increasingly falling short. (Ahmed et al. 2018). This is where artificial intelligence (AI) is stepping in, emerging as a game-changing force in the world of pest management.

Why Do We Need AI in Pest Management?

Traditional pest management relies on manual field surveys, expert identification, and routine pesticide spraying. These methods, while sometimes effective, are labor-intensive, time-consuming, costly, and prone to inaccuracies-often resulting in overuse of chemicals, environmental contamination, and pest resistance. In today's world of unpredictable pest outbreaks and mounting concern for both food security and environmental health, farmers and researchers are searching for more efficient, precise, and sustainable solutions (Dutta et al.2020).

Artificial Intelligence offers this potential by:

- Automating pest detection and identification
- Enabling early and accurate prediction of infestations
- Optimizing treatment timing and quantity
- Reducing unneeded pesticide application and environmental harm

How Does AI Transform Pest Management?

At its core, AI in pest management relies on collecting, analyzing, and acting on vast quantities of data that would overwhelm any human team (Liet al. 2021). Here's how that shift happens:

1. Automated Pest Detection and Monitoring

AI systems use devices such as cameras, microphones, and environmental sensors to continuously collect data from fields. These systems, often powered by computer vision and machine learning algorithms, can detect pests by analysing (Hanif*et al.*2022 and Doe *et al.*2023):

- Visual features (shape, color, wing patterns)
- Heat signatures
- Movements and sometimes even sounds

For example, AI-enabled sticky traps with cameras capture images of insect visitors. Deep learning models such as *YOLO* (You Only Look Once) can detect and count pest species in

real time, accurately discerning between harmful and non-harmful insects-even at early stages of infestation.

2. Precise Identification and Classification

Modern machine learning models, trained on massive datasets, can identify pest species with remarkable accuracy-far surpassing basic manual methods. Some mobile apps now let farmers photograph pests directly in the field. The AI compares the image to its database and quickly returns:

- The pest's species (e.g., Pink Bollworm, American Bollworm, aphids)
- Estimated population density
- Urgency of intervention

This approach drastically reduces the need for expert entomologists in the field and speeds up the response time.

3. Predictive Modeling and Early Warning Systems

AI excels at making sense of complex, interconnected variables-weather patterns, crop phenology, historical infestation data, and real-time field conditions. By feeding these data streams into neural networks and advanced predictive models, AI systems can give:

- Early warnings of likely pest outbreaks
- Location-specific risk maps
- Tailored recommendations for control actions before the problem escalates

Example: The CottonAce platform in India asks farmers to upload photos from pheromone traps in their cotton fields. AI verifies image quality, identifies captured pests, counts the individuals, and determines if the *Economic Threshold Limit* (ETL) has been reached for intervention. These insights are instantly shared with local farmer networks.

4. Optimized Interventions and Precision Pesticide Application

Armed with detailed pest maps and outbreak predictions, farmers can target their interventions more precisely than ever. AI can:

- Recommend the best timing, location, and dosage of pesticide application
- Suggest alternative, eco-friendlier treatments when possible
- Control drones or smart sprayers to deliver pesticides only where needed

For instance, AI-guided drones and tractors can identify infestations on the move and spray only the affected areas, reducing pesticide use by up to 90% compared to blanket spraying. Not only does this save money, but it also limits chemical exposure to non-target organisms, farm workers, and surrounding ecosystems.

Real-World Examples

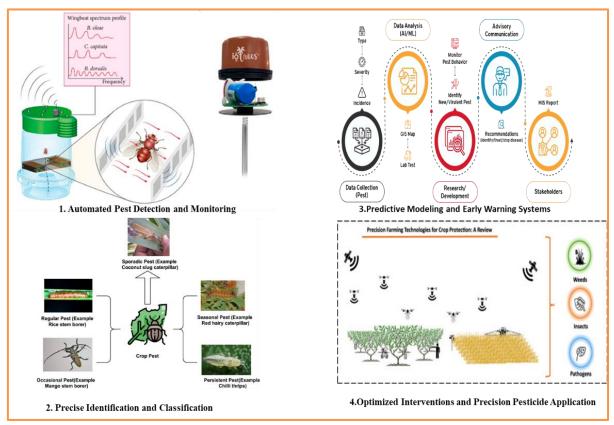
Rentokil's PestConnect

• A 24/7 AI monitoring system that continually observes customer sites for pest movement, provides real-time alerts, and supplies trend data to plan interventions efficiently.

Blue River Technology's Smart Sprayer

• Uses AI-based image recognition to distinguish crops from weeds and pests, spraying only when and where needed, massively cutting chemical use.

Wadhwani AI's CottonAce


• Provides smallholder farmers with AI-powered, location-specific pest alerts via a simple mobile app, democratizing access to expert guidance.

The Benefits Go Beyond Efficiency

The application of AI in pest management is more than just automating tasks. It brings a host of broader advantages:

- **Economic Gains:** By reducing crop losses and unnecessary pesticide spending, AI-driven pest management improves farm profitability.
- **Environmental Protection:** Precision use of chemicals curbs runoff, preserves beneficial insect populations (like pollinators), and delays the spread of pesticide resistance.
- Worker and Consumer Safety: Less chemical exposure means safer conditions for workers and lower residue in food products.

• Scalability and Accessibility: Mobile and IoT-based AI tools level the playing field, bringing expert decision-support to farmers regardless of their location or skill level.

Challenges and how to over come it?

While promising, AI implementation in pest management isn't without hurdles:

- Data requirements: High volumes of accurate, labeled images and environmental data are crucial for training reliable AI models.
- Infrastructure: Some AI solutions rely on robust connectivity, electricity, and compatible devices—which can be scarce in rural parts of lower-income countries.
- User Acceptance: Farmers may need training and trust-building to adopt and rely on automated recommendations, especially if they're used to traditional methods.

Collaborative efforts between technology providers, extension agencies, and government bodies are essential for wide-scale adoption and effective deployment.

The Future: What's Next for AI in Pest Management?

AI technologies are developing rapidly, making their way into integrated pest management (IPM) frameworks worldwide. The future could include:

- Greater use of AI-powered autonomous robots for pest scouting and intervention
- Even more precise, real-time monitoring at the micro-field level using edge computing
- Widespread, affordable access to AI decision-support via mobile platforms
- Integration with climate models to anticipate how global warming will shift pest patterns As AI continues to mature, its potential to revolutionize pest management becomes ever clearer-not just for large-scale agriculture, but also for smallholder farmers and urban environments.

Conclusion

The adoption of artificial intelligence in the management of insect pests represents a remarkable leap forward for agriculture—boosting productivity, sustainability, and resilience against growing pest pressures. By enabling early detection, precision response, and smarter use of resources, AI is transforming how we protect the world's food supply. As new technologies are developed and made accessible, the journey toward a more sustainable, food-secure future grows ever brighter. With AI as an ally, the age-old battle against insect

pests is being fought—and increasingly, won—using the most advanced tools the digital era has to offer.

References

- 1. N. Ahmed, D. De, I. Hussain, Internet of Things (IoT) for smart precision agriculture and farming in rural areas, IEEE Internet Things J. 5 (6) (2018) 4890–4899.
- 2. R. Dutta, S. Sharma, Artificial Intelligence for Sustainable Agriculture: AComprehensive Review, IEEE Access 8 (2020) 73641–73672.
- 3. W. Li, D. Wang, M. Li, Y. Gao, J. Wu, X. Yang, Field detection of tiny pests fromsticky trap images using deep learning in agricultural greenhouse, Comput. Electron. Agric. (2021) 183.
- 4. M.K. Hanif, S.Z. Khan, M. Bibi, Applications of artificial intelligence in pestmanagement. Artificial Intelligence and Smart Agriculture Applications, Auerbach Publications, 2022, pp. 277–300.
- 5. J. Doe, A. Smith, Applications of artificial intelligence in pest management:detection and identification techniques, J. Pest Manag. 15 (2) (2023) 78–89.