

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in
[©]Agri Magazine, ISSN: 3048-8656

Smart Coffee: AI and IoT in Modern Coffee Processing Plants

*Pavankumar M¹, Sumanth MV², Poojitha SR³ and Suneel Subray Hegde¹

¹Ph.D. Research scholar, Division of Post Harvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Bengaluru, India

²SRF, AICRP on Fruits, ICAR- Indian Institute of Horticultural Research, Bengaluru

³Division of Flower and Medicinal Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India

*Corresponding Author's email: pavankumariihr@gmail.com

The coffee we enjoy every day has a long journey from plantations nestled in hill slopes to processing units and, eventually, to our cups. Traditionally, coffee processing was labor-intensive, subjective, and prone to inconsistencies in quality (Olasari et al., 2023). However, with the rise of digital agriculture, emerging technologies like Artificial Intelligence (AI) and the Internet of Things (IoT) are revolutionizing the post-harvest handling and processing of coffee beans. These innovations are not just about automation. They bring real-time monitoring, predictive analytics, and traceability into the coffee value chain. This new era of "Smart Coffee" is enabling farmers and processors to improve quality, reduce losses, and meet global standards for consistency, safety, and sustainability (Kim et al., 2024).

Scope and Importance

India, as the sixth-largest coffee producer in the world, exports nearly 70% of its produce (Nagaveni et al., 2024). Markets in Europe, Japan, and the U.S. are increasingly demanding coffee that is not just high in quality but also traceable and sustainable. Digital technologies can fill this gap by offering data-driven insights, which are especially valuable in specialty coffee production, where flavor profiles and consistency are paramount. Moreover, climate change, fluctuating prices, and labor shortages challenge the long-term sustainability of coffee farming and processing (Cristina and Sania, 2022). AI and IoT technologies offer cost-effective solutions by automating critical tasks, detecting quality defects early, optimizing energy use, overcoming labour shortage problem and predicting equipment failure ultimately leading to better decision-making and profitability (Fig. 1).

Fig.1. Depiction of AI and robotic use in coffee processing

Methods: How AI and IoT Are Transforming Coffee Processing

1. Real-Time Monitoring of Fermentation and Drying

Fermentation is a key step that determines coffee flavor. IoT sensors can now track pH, temperature, and microbial activity in real time (Adeleke et al., 2023). AI algorithms analyze this data to suggest when the fermentation should be stopped to achieve optimal results (Rocha., 2024). Similarly, smart sensors in drying yards or dryers measure humidity, airflow, and temperature, helping processors avoid under or over-drying.

2. Quality Grading and Defect Detection

AI-powered vision systems equipped with cameras and machine learning software can now grade green coffee beans by detecting size, color, and defects like insect damage or mold faster and more accurately than the human eye (Wallelign, 2020). These systems also ensure uniformity, which is critical for roasters and exporters (Fig. 2).

3. Smart Roasting

AI enabled roasters can track bean color, internal temperature, moisture loss, and gas composition to adjust roast profiles in real time. This allows for consistent flavor development, especially important for artisanal and specialty coffee (Wibowo., 2022).

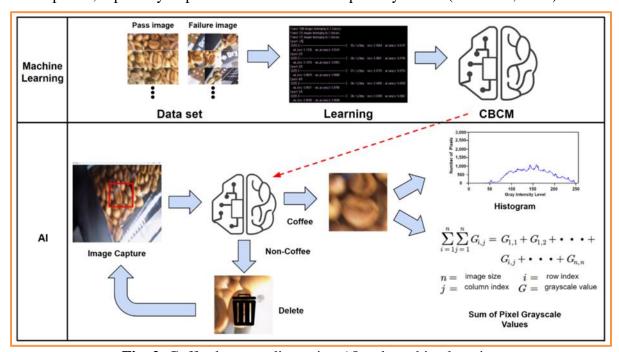


Fig. 2. Coffee bean grading using AI and machine learning

4. Predictive Maintenance and Energy Efficiency

IoT enabled machines can detect vibrations, motor temperature, or load changes, allowing operators to predict potential machine breakdowns. AI models can also suggest energy-saving schedules, thus reducing operational costs and minimizing downtime (Chiotti, 2019).

5. Traceability and Block Chain Integration

Smart sensors and digital records can track coffee from farm to cup. Block chain based traceability systems are now used to verify origin, carbon footprint, and processing details, offering full transparency to consumers and compliance for exporters (Ligar et al., 2024).

Technology Availability

India has begun embracing smart technologies in coffee through pilot projects, startups, and institutional R&D:

- **AI-based grading machines** for green coffee are being developed by agri-tech companies in Bengaluru and Hyderabad.
- **IoT sensor kits** for monitoring fermentation and drying are available from companies like **CropIn**, **Fasal**, and **AgNext**.

- AI-integrated roasters and vision-sorting systems are now entering high-end specialty coffee roasters in Coorg and Chikmagalur.
- Software platforms like **TraceX** and **Farmlink** are enabling traceability and quality analytics for estates and cooperatives.
- The **Central Coffee Research Institute** (**CCRI**) is exploring AI models for crop and post-harvest management, while private tech firms collaborate with plantation owners to scale adoption.

Though still in the early stages, these technologies are becoming more affordable and user-friendly, especially with smartphone interfaces, cloud dashboards, and vernacular language support.

Indian Government Initiatives

The Government of India is increasingly supporting digital interventions in coffee through multiple platforms:

- Under the **Digital Agriculture Mission** (2021–2025), funds are being channeled to adopt AI and IoT technologies in value chains like coffee.
- The **Coffee Board of India**, in partnership with **ICAR** and private firms, has initiated training on digital tools for planters.
- Schemes like the **Agri-Infra Fund** and **Startup India** support technology-based startups working on AI, IoT, and traceability.
- The National e-Governance Plan in Agriculture (NeGP-A) encourages integration of mobile and sensor-based technologies for better farm and post-harvest management.
- Karnataka Government's "Digitizing Plantation Crops" program includes pilot initiatives to automate grading and processing in coffee estates.

These initiatives aim to bring small and medium coffee growers and processors into the digital fold, ensuring inclusivity in the Fourth Agricultural Revolution.

Conclusion and Way Forward

The rise of AI and IoT in coffee processing is a promising leap toward precision agriculture and climate-smart processing. While large estates and premium brands are early adopters, the real potential lies in democratizing access for small and medium producers, who form the backbone of India's coffee sector.

However, barriers such as high initial costs, lack of digital literacy, and internet connectivity in remote regions still exist. Hence, moving forward requires:

- Custom-designed, low-cost smart tools for smallholders
- Skilling programs on digital coffee processing in local languages
- Public-private partnerships to deploy AI/IoT tools at scale
- Integration of financial incentives and carbon credit systems with smart processing technologies

India has the opportunity to lead in sustainable and smart coffee production. With the right technology, training, and support, we can ensure that every coffee bean processed not only carries rich flavor but also the imprint of innovation, traceability, and sustainability.

References

- 1. Adeleke, I., Nwulu, N., and Adebo, O. A. (2023). Internet of Things (IoT) in the food fermentation process: A bibliometric review. *Journal of Food Process Engineering*, 46(5), e14321.
- 2. Chiotti, A. (2019). *Industrial Data Analytics from IoT sensors: an explorative study on coffee machines* (Doctoral dissertation, Politecnico di Torino).
- 3. Cristina, E. M., and Sania, O. A. (2022). Scientific, Technical, and Social Challenges of Coffee Rural. *Sustainable Agricultural Value Chain*, 3.
- 4. Kim, Y., Lee, J., and Kim, S. (2024). Study of active food processing technology using computer vision and AI in coffee roasting. *Food Science and Biotechnology*, 33(11), 2543-2550.

- 5. Ligar, B., Madenda, S., Mardjan, S., and Kusuma, T. (2024). Design of a traceability system for a coffee supply chain based on blockchain and machine learning. *Journal of Industrial Engineering and Management*, 17(1), 151-167.
- 6. Nagaveni, M., Devegowda, S. R., Yadav, A., Kumar, P. P., and Kushwaha, S. (2024). Trends and trade directions in the production and export of coffee. *Indian Journal of Agricultural Marketing*, 38(1), 128-140.
- 7. Olasari, T. P., Bustomi, A. O., and Setyawan, E. (2023). Optimization of Coffee Farmers in Modern and Traditional Coffee Processing to Increase Selling Price in Lemah Putih Village. *Cirebon International Journal of Economics and Business*, *1*(2), 125-132.
- 8. Rocha, R. A., Cruz, M. A. D., Silva, L. C., Costa, G. X., Amaral, L. R., Bertarini, P. L., and Santos, L. D. (2024). Evaluation of arabica coffee fermentation using machine learning. *Foods*, *13*(3), 454.
- 9. Wallelign, S. (2020). *An intelligent system for coffee grading and disease identification* (Doctoral dissertation, École Nationale d'Ingénieurs de Brest).
- 10. Wibowo, J. W., Munandar, A., Mahendra, O., Josary, J. V., Ningrum, D. I. S., and Sejati, B. (2022, December). A review of a smart Coffee Roaster: electronics, design, and artificial intelligence. In *IOP Conference Series: Earth and Environmental Science* (Vol. 1116, No. 1, p. 012011). IOP Publishing.