

# AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

# Sustainable Rice and Wheat-Based Cropping Systems in India: Trends, Practices, and Ecological Impacts

\*Meera L Raj¹ and Ashik Nizar²

<sup>1</sup>M. Sc. Agronomy, Kerala Agriculture University, India
 <sup>2</sup>B. Sc. Agriculture, Dr. Bhimrao Ambedkar University, India
 \*Corresponding Author's email: meeralraj2505@gmail.com

India's Green Revolution brought significant increases in food production, particularly rice and wheat. However, the focus on monoculture, heavy fertilizer use, and loss of traditional varieties has led to environmental degradation and loss of biodiversity. This paper reviews rice- and wheat-based cropping systems across various agro-climatic zones in India, highlighting diversified, intercropped, and sustainable models, along with their impact on soil health, productivity, and climate resilience.

**Keywords:** Rice-based systems, Wheat-based systems, Cropping diversification, Intercropping, Relay cropping, Sustainable agriculture, Soil health, Agroecology, India

#### Introduction

The Green Revolution, initiated in the 1960s, addressed food insecurity in India by introducing high-yielding varieties (HYVs) of rice and wheat. While it succeeded in boosting crop production, especially in densely populated regions, it came at the cost of agrobiodiversity and soil health. Traditional practices, including crop rotation and organic husbandry, declined as monocultures and chemical fertilizers became dominant. India has since shifted toward the "evergreen revolution," emphasizing ecologically sustainable, socially inclusive, and economically viable agricultural practices. This article focuses on rice-and wheat-based cropping systems, their types, regional patterns, and effects on productivity and soil properties.

# **Cropping System Types in India**

Cropping systems vary by climatic conditions, soil type, and socioeconomic context. Major types include:

- Monocropping
- Intercropping
- Sequential Cropping
- Crop Rotation
- Alley Cropping
- Relay Cropping

# **Rice-Based Cropping Systems**

India grows rice across diverse agro-ecological zones. Key rice-based systems include:

- Rice-Wheat (Indo-Gangetic Plains)
- Rice-Pulse/Oilseed (Eastern and Southern states)
- Rice-Rice (Coastal and irrigated regions)

**Intercropping and Mixed Cropping:** Mixed cropping of early (ahu) and late (bao) rice in flood-prone Assam and koottumundakan rice cultivation in Kerala improve yield and lower costs. Intercropping rice with soybean improves productivity when paired with weed control.

AGRI MAGAZINE ISSN: 3048-8656 Page 511

**Sequential and Relay Cropping:** Relay systems like rice-lathyrus/lentil utilize residual soil moisture. Utera cropping improves productivity in fallow lands.

**Irrigated Systems:** Triple cropping such as rice-rice-vegetables or rice-rice-pulses enhances land use.

**Productivity and Soil Impact:** Legumes in rice sequences improve soil organic carbon, microbial activity, and nutrient status.

## **Wheat-Based Cropping Systems**

Wheat is mainly grown in Northern and Central India. Common systems:

- Wheat-Fallow-Maize-Potato
- Wheat-Green Pea-Summer Moong Bean

**Intercropping:** Wheat intercropped with legumes or vegetables (e.g., radish) improves yield and income.

**Nutrient Management:** Combining FYM with fertilizers improves NPK levels. Wheat—mung bean—maize systems show high productivity.

## **Regional and System-Specific Observations**

**Kerala:** Rice–rice–amaranthus and rice–rice–sweet potato are highly productive in wetlands. Fish integration enhances yields by 15.5%.

**Drought-Prone Areas:** Aerobic rice systems and use of PPFM bacteria improve drought tolerance and crop performance.

#### **Environmental Considerations**

Puddling for rice damages soil structure, reducing porosity and yield in subsequent wheat crops. Over 1 lakh traditional rice varieties have been lost. Restoration of cropping diversity is critical for climate resilience.

#### **Conclusion**

Cropping systems are evolving from productivity-only models to those prioritizing ecological and economic sustainability. Intercropping, rotations, and conservation practices must be region-specific. Promotion of research-backed models is essential for ensuring long-term food security and soil health.

#### References

- 1. Aswathy, J.C., Pillai, P.S., John, J. and Meenakumari, K., 2020. Effect of pink pigmented facultative methylotrophs (PPFM) on growth and growth attributes of rice (Oryza sativa L.). *International Journal of Chemical Studies*, 8(4), pp.3209-3213.
- 2. Banjara, T.R., Bohra, J.S., Kumar, S., Singh, T., Shori, A. and Prajapat, K., 2022. Sustainable alternative crop rotations to the irrigated rice-wheat cropping system of Indo-Gangetic Plains of India. *Archives of Agronomy and Soil Science*, 68(11), pp.1568-1585.
- 3. Deb, D., 2012. From 1,10,000 varieties of rice to only 6,000 now. *The Hindu*. [online] Available at: https://www.thehindu.com [Accessed date].
- 4. Francies, R.M., Joseph, J., Zacchariah, G., Leenakumary, S., Raji, P., Karthikeyan, S. and Rao, G.S., 2013. PTB 59-'Samyuktha' a high yielding rice variety for kootumundakan system of cultivation in Kerala. *Journal of Tropical Agriculture*, 51(1), pp.66-73.
- 5. Hall, W.F., 1964. *Agriculture in India*. Regional Analysis Division, Economic Research Service, USDA, p.13.
- 6. Jadhav, K.T., Alse, U.N., Suryawanshi, V.P. and Suryawanshi, M.S., 2014. Evaluation of Intercropping of Soybean with Different Row Proportions and Weed Management Practices in Upland Rainfed Rice. *Soybean Research*, pp.173.
- 7. John, J., Rani, B., Varughese, K. and Mathew, B.P., 2007. Performance of Cassava, Sweet Potato and Chinese Potato in Rice Based Cropping Systems of Southern Kerala.
- 8. Khush, G.S., 1999. Green revolution: preparing for the 21st century. *Genome*, 42(4), pp.646-655.

AGRI MAGAZINE ISSN: 3048-8656 Page 512

- 9. Kumar, R. et al., 2019. Sustainable intensification of rice fallows of Eastern India with suitable winter crop and appropriate crop establishment technique. *Environmental Science and Pollution Research*, 26(28), pp.29409-29423.
- 10. Painuli, D.K., Woodhead, T. and Pagliai, M., 1988. Effective use of energy and water in rice-soil puddling. *Soil and Tillage Research*, 12, pp.149-161.
- 11. Pingali, P.L. and Shah, M., 2001. Policy re-directions for sustainable resource use: The rice-wheat cropping system of the Indo-Gangetic Plains. *Journal of Crop Production*, 3, pp.103–118.
- 12. Reshma, M.R., Pillai, P.S., John, J. and Thampatti, K.C.M., 2019. Effect of crop diversification and fish integration in productivity enhancement of rice. *International Journal of Current Microbiology and Applied Sciences*, 8(11), pp.382-387.
- 13. Reddy, T.Y. and Ramu, K., 2016. Principles of Agronomy. Kalyani Publishers.
- 14. Rosset, P., Collins, J. and Lappé, F.M., 2000. Lessons from the green revolution. *Third World Resurgence*, pp.11-14.
- 15. Shiva, V., 1993. The violence of the green revolution: Third world agriculture, ecology and politics. 2nd ed. London: Zed Books Ltd.
- 16. Singh, G.D., Vyas, A.K. and Dhar, S., 2015. Productivity and profitability of wheat (Triticum aestivum)-based cropping systems under different nutrient-management practices. *Indian Journal of Agronomy*, 60(1), pp.52-56.
- 17. Singh, R.B., 2000. Environmental consequences of agricultural development: a case study from the green revolution state of Haryana, India. *Agriculture, Ecosystems & Environment*, 82(1–3), pp.97–103.
- 18. Suresh, M., 2022. Green revolution and recent technological innovations: Thinking for future solutions. *International Journal of Health Sciences*, 6(S4), pp.5071–5079.
- 19. Swaminathan, M.S., 2000. An Evergreen Revolution. *Biologist*, 47, pp.85-89.
- 20. The Hindu, 2012. From 1,10,000 varieties of rice to only 6,000 now. *The Hindu*. [online] Available at: https://www.thehindu.com [Accessed date].
- 21. Tripathi, R.P., Gaur, M.K. and Rawat, M.S., 2003. Puddling effect on soil physical properties and rice performance under shallow water table condition of Tarai. *Journal of the Indian Society of Soil Science*, 51, pp.118-124.
- 22. Walia, S.S., Singh, S., Gill, R.S., Aulakh, C.S. and Kaur, N., 2014. Production potential and economic analysis of different rice-based cropping systems in north-west India. *Research on Crops*, 15(3), pp.539-542.

**AGRI MAGAZINE** ISSN: 3048-8656 Page 513