

# AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

Available online at http://www.agrimagazine.in

\*\*Open Comparison of Com

# **Agrovoltaics in Agriculture**

\*Jeyajothi R, Vinothini N, Akshaya S B, Shakila Sadasivam and Akino Asokan SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Baburayanpettai, Chengalpattu, Tamil Nadu – 603 301, India \*Corresponding Author's email: jeyajotr@srmist.edu.in

Agrovoltaics, also know as solar farming, represents an innovative approach that combines agricultural production with solar energy generation on the same land. This dual-use system is gaining significant momentum as a solution to address land scarcity, renewable energy needs, and climate adaptation challenges. Agrovoltaic systems, solar panels are strategically installed above crop fields or alongside rows of crops, providing partial shading that can protect plants from excessive heat, reduce water evaporation, and even improve crop yields in certain environments. The electricity produced can be used to power farm operations or sold to the grid, providing farmers with a supplemental income stream.

## **Key Concepts and Benefits**

Agrovoltaics integrates solar panel systems with agricultural practices Exploring the impact of Agrovoltaics on horticultural crop yields and environmental stress mitigation. **Environmental Protection**: Agrovoltaics can help farmers protect their crops from climate conditions by offering shade, which lowers soil temperatures and shields plants from excessive heat Agrovoltaics: How They Benefit Farmers and the Climate. This is particularly valuable as agriculture faces increasing challenges from droughts, floods, and extreme weather events.

**Economic Opportunities:** The agrivoltaic market size was valued at USD 6.3 billion in 2024 and is likely to grow at a CAGR of 5.6% from 2025 to 2034 Agrivoltaic Market Size, Growth Opportunity 2025-2034, indicating strong economic potential for farmers and investors.

**Triple Land Use**: The use of 3rd Gen PVs, and in particular the OPVs, offers a Triple Land Use. It enhances food production, optimizes water usage, and transforms farms into clean energy hubs agrivoltaics 2025.

# Market Growth and Industry Development

# **Implementation Approaches**

Modern agrovoltaic systems employ various configurations to maximize both agricultural and energy outputs while minimizing conflicts between the two uses. The technology continues to evolve with improvements in solar panel efficiency, mounting systems, and agricultural integration techniques.

The sector represents a promising convergence of renewable energy and sustainable agriculture, offering farmers additional revenue streams while contributing to climate goals and food security objectives.

AGRI MAGAZINE ISSN: 3048-8656 Page 426

## **Crops suitable for Agrovoltaics**

These crops benefit from partial shade provided by solar panels, making them ideal for agrovoltaic systems.

## **Leafy Vegetables:**

• Lettuce, Spinach, Kale, Swiss chard and Arugula

#### Herbs:

Basil, Mint, Parsley, Cilantro and Chives

#### **Fruit Vegetables**

These crops can tolerate moderate shading and often show improved performance under reduced heat stress.

• Tomatoes, Bell peppers, Eggplants, Chillies and Okra

#### **Root and Tuber Crops**

Partial shading can protect the soil and reduce heat stress, supporting underground growth.

• Potatoes, Carrots, Radishes, Beets and Turnips

### Cereals and Grains (With Spacing Considerations)

While most grains need full sunlight, some can be grown in modified agrovoltaic setups with wider panel spacing or vertical panels.

Barley, Wheat, Oats, Foxtail millet

#### **Legumes and Pulses**

Some legumes perform well under agrovoltaic systems, especially where moderate shading improves water retention.

• Soybean, Chickpea, Cowpea, Green gram (moong dal) and Lentils

#### Fruits (Low-Growing or Semi-Dwarf Varieties)

Fruit crops that grow close to the ground or tolerate shade can work under panels with adjusted height and spacing.

• Strawberries, Raspberries, Blueberries, Dwarf citrus varieties

#### Forage Crops and Grasses (Under Grazing-Based Agrovoltaics)

Can be grown beneath panels for livestock feed and pasture grazing.

• Alfalfa, Clover, Ryegrass, Fescue and Napier grass

#### References

- 1. Omer, A. A. A., Li, M., Zhang, F., Hassaan, M. M. E., El Kolaly, W., Zhang, X., ... & Liu, W. (2025). Impacts of agrivoltaic systems on microclimate, water use efficiency, and crop yield: A systematic review. *Renewable and Sustainable Energy Reviews*, 221, 115930.
- 2. Nandi, S., Das, S., Gorain, S., Dutta, S., Roy Choudhury, M., & Das, S. (2025). Land degradation neutrality: a pathway to achieving sustainable development goals and ecosystem resilience. *Discover Soil*, 2(1), 48.
- **3.** Bello, R. W., Owolawi, P. A., Tu, C., van Wyk, E. A., & Oladipo, M. M. A. Real-time plant pest monitoring in agrivoltaic farms using deep learning-based pest image generation models for sustainable pest management.

AGRI MAGAZINE ISSN: 3048-8656 Page 427