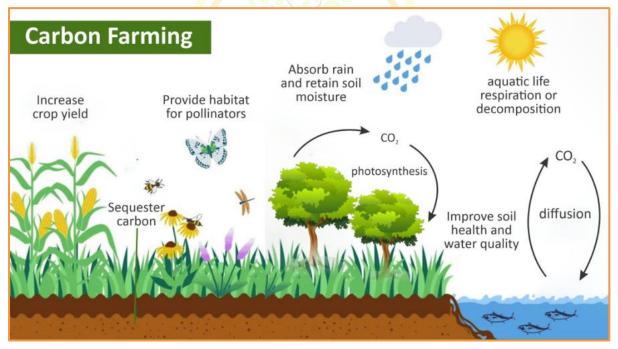


AGRI MAGAZINE

(International E-Magazine for Agricultural Articles)
Volume: 02, Issue: 07 (July, 2025)

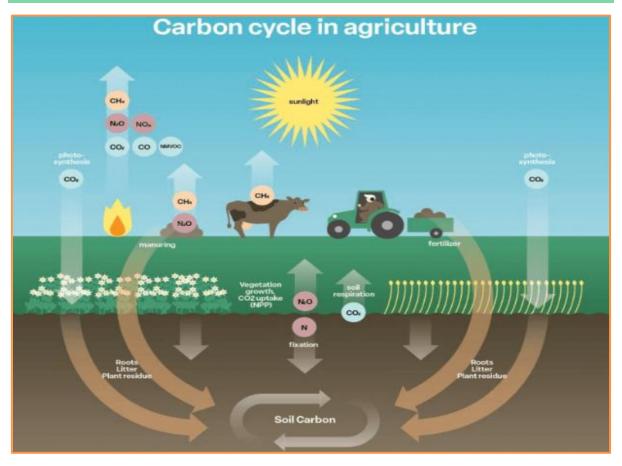
Available online at http://www.agrimagazine.in
[©]Agri Magazine, ISSN: 3048-8656


Carbon Farming and Regenerative Agriculture Tools

*Vinothini N¹, Jeyajothi R¹, Akshaya S. B¹, Shakila S¹, Akino A¹ and Venkatakrishnan L²

¹SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Baburayanpettai, Chengalpattu District-603201, Tamil Nadu, India ²School of Agricultural Sciences, Takshashila University, Villupuram District-604305, Tamil Nadu, India

*Corresponding Author's email: <u>ns.vinothini93@gmail.com</u>


Carbon farming and regenerative agriculture represent a significant paradigm shift in how modern agriculture can mitigate climate change while restoring ecosystem health. These practices focus on enhancing the capacity of agricultural systems to sequester atmospheric carbon dioxide into the soil and biomass. By adopting methods that restore soil organic matter, promote biodiversity, and reduce greenhouse gas emissions, farmers contribute not only to climate change mitigation but also to improved soil fertility, water retention, and resilience against extreme weather. The development and integration of specialized tools and technologies are critical to optimizing and scaling these practices across diverse agroecosystems.

Carbon Farming

Carbon farming is a climate-smart agricultural approach that incorporates practices aimed at increasing carbon sequestration while minimizing greenhouse gas emissions. The primary objectives include restoring degraded soils, increasing biomass production, enhancing microbial activity, and stabilizing organic carbon in soil profiles. These outcomes not only reduce atmospheric CO₂ but also support long-term soil productivity and sustainability. Carbon farming is grounded in ecological principles and seeks to work in harmony with natural cycles.

AGRI MAGAZINE ISSN: 3048-8656 Page 401

Key Practices that Promote Carbon Sequestration

- Several agricultural practices contribute to carbon capture and storage. These include:
- Cover Cropping: Planting legumes and grasses in the off-season to protect soil and increase organic matter.
- Reduced Tillage or No-Till Farming: Minimizing soil disturbance to prevent carbon loss and enhance microbial activity.
- Composting and Organic Amendments: Adding compost and manure to increase soil organic carbon.
- Agroforestry and Tree Planting: Integrating trees with crops or pastures to store carbon in biomass.
- Crop Rotation and Diversification: Rotating crops and including legumes to enhance soil structure and fertility.

Soil Carbon Sequestration Techniques

One of the cornerstones of carbon farming is improving soil organic carbon levels through specific techniques. Cover cropping with legumes or deep-rooted species enhances root biomass and organic matter inputs. Conservation tillage or no-till methods reduce soil disturbance, thereby limiting carbon oxidation and loss. Incorporating crop residues, using composts, and planting perennial crops are also effective strategies. These practices collectively increase carbon retention in the root zone and contribute to building long-term soil health.

Regenerative Agriculture Practices and Benefits

Regenerative agriculture emphasizes the restoration of soil health, biodiversity, and ecosystem function. Key practices include rotational grazing, agroforestry, multispecies cover cropping, compost application, and integration of livestock with cropping systems. These practices promote nutrient cycling, water infiltration, and pest suppression while significantly contributing to carbon sequestration. Unlike conventional systems that deplete resources, regenerative systems improve them over time, offering a sustainable model for agriculture that is resilient to climatic variations.

Carbon Accounting and Measurement Tools

To verify the impact of carbon farming, accurate measurement of carbon sequestration and emissions is essential. Tools such as COMET-Farm, Cool Farm Tool, and Soil Carbon Check provide farmers and researchers with models to estimate carbon fluxes based on land use, soil type, and management practices. Remote sensing technologies, soil probes, and portable carbon flux analyzers are also increasingly used to track soil carbon dynamics. These tools support farmers in decision-making and enable participation in carbon credit markets by providing evidence-based data.

Digital Platforms and AI for Carbon Farming

Artificial intelligence and digital agriculture platforms are revolutionizing carbon farming by offering real-time monitoring and predictive analytics. Satellite imagery, GIS-based mapping, and machine learning algorithms can identify high carbon sequestration zones, assess changes over time, and suggest optimal land management strategies. Mobile applications now allow smallholder farmers to access personalized recommendations and monitor their carbon footprint, bridging the gap between science and practice.

Biochar and Its Role in Carbon Sequestration

Biochar, a form of charcoal produced from biomass through pyrolysis, is a stable carbon-rich material that can be incorporated into soils to enhance carbon storage. It improves soil aeration, water retention, and microbial activity, all of which contribute to better crop productivity and carbon stability. The application of biochar not only locks carbon in the soil for centuries but also reduces the need for chemical fertilizers, aligning with regenerative goals.

Carbon Credits and Incentive Mechanisms

Market-based mechanisms like carbon credits are vital to encouraging wider adoption of carbon farming. Farmers who demonstrate verifiable carbon sequestration can sell these credits to industries seeking to offset emissions. Programs like the Verified Carbon Standard (VCS), Gold Standard, and national carbon trading schemes provide certification for such efforts. These incentives support the economic viability of adopting regenerative practices while contributing to global emission reduction targets.

Conclusion

Carbon farming represents a forward-thinking, regenerative solution to the twin challenges of climate change and agricultural sustainability. By enhancing the natural carbon capture potential of farming systems, this approach not only helps reduce global emissions but also

AGRI MAGAZINE ISSN: 3048-8656 Page 403

restores the health and productivity of soils. With the right mix of science, policy, technology, and incentives, carbon farming can become a cornerstone of future food systems that are both climate-resilient and economically rewarding.

References

- 1. Kyriakarakos, G., Petropoulos, T., Marinoudi, V., Berruto, R. and Bochtis, D., 2024. Carbon Farming: Bridging Technology Development with Policy Goals. *Sustainability*, 16(5), p.1903.
- 2. Pontius, J. and McIntosh, A., 2024. Regenerative agriculture. In *Environmental Problem Solving in an Age of Climate Change: Volume One: Basic Tools and Techniques* (pp. 135-147). Cham: Springer International Publishing.

AGRI MAGAZINE ISSN: 3048-8656 Page 404