

AGRI MAGAZINE

(International E-Magazine for Agricultural Articles) Volume: 02, Issue: 05 (May, 2025) Available online at http://www.agrimagazine.in [©]Agri Magazine, ISSN: 3048-8656

From Signals to Solutions: A Modern Take on Soil Fertility Using Sensor Technology

*Sayantan Mandal¹, Sritama Choudhury², Sayan Naskar³ and Shreetama Giri³ ¹Ph.D. Scholar, Department of Soil Science, IARI-Kolkata Hub, CRIJAF, Barrackpore, West Bengal, India

²M.Sc. 2nd year, Department of Agronomy, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, West Bengal, India ³M.Sc. 1st year, Department of Agronomy, The Neotia University, South 24 Parganas, West Bengal, India ^{*}Corresponding Author's email: <u>sayantanmandal456@gmail.com</u>

The assessment of soil fertility is vital for optimizing crop production and ensuring sustainable agricultural practices. Traditional laboratory-based soil analysis methods, though reliable, are often time-consuming, expensive, and limited in spatial coverage. In contrast, sensor-based soil fertility analysis offers a rapid, non-destructive, and cost-effective alternative that enables real-time monitoring of key soil parameters. This approach utilizes a range of proximal and remote sensing technologies—such as optical, electromagnetic, and ion-selective sensors—integrated with GPS and GIS tools to provide high-resolution spatial data. Through calibration with laboratory results and the application of statistical or machine learning models, sensor data can be translated into accurate soil fertility metrics. The processed data is used to generate detailed soil maps, define management zones, and support variable-rate fertilizer application. Ultimately, sensor-based analysis enhances decision-making in precision agriculture, reduces input costs, and promotes environmentally sustainable farming. This paper outlines the principles, types of sensors, data processing workflows, and practical applications of sensor-based soil fertility assessment in modern agriculture.

Keywords: Sensor-based soil analysis, Precision agriculture, Soil fertility mapping, Realtime monitoring

Introduction

Soil fertility plays a vital role in determining crop productivity and ensuring sustainable agricultural practices. Traditionally, soil fertility is assessed through laboratory-based chemical analyses, which are time-consuming, costly, and spatially limited. However, with the advancement in technology, sensor-based soil fertility analysis has emerged as a rapid, efficient, and cost-effective method for assessing soil properties in real-time. This method allows for precision agriculture, site-specific nutrient management, and data-driven decision-making, thus improving input-use efficiency and environmental sustainability.

Objectives

- To assess soil nutrient status quickly and accurately using real-time sensor data.
- To enable site-specific nutrient management for improving crop productivity.
- To integrate geospatial tools (GPS, GIS) with sensor data for high-resolution soil mapping.

- To reduce reliance on traditional lab-based testing by adopting non-destructive sensing methods.
- To support precision agriculture practices through timely decision-making.
- To promote sustainable use of fertilizers and minimize environmental impact.

Principle

The principle of sensor-based soil fertility analysis lies in detecting specific physical or chemical signals from the soil, such as light reflectance, radiation, or electrical conductivity. These signals are closely correlated with important soil properties like pH, organic carbon, and nutrient concentrations (e.g., nitrogen, phosphorus, potassium). To ensure accuracy, sensor readings must be calibrated against standard laboratory analyses. The data collected is geo-referenced using GPS to maintain spatial accuracy, allowing integration with GIS for mapping. Advanced models, including statistical or machine learning techniques, are applied to convert raw sensor outputs into interpretable soil fertility metrics. Ultimately, this enables high-resolution soil nutrient mapping and the delineation of management zones for precision farming.

Types of sensors							
Sensor Type	Working Principle	Soil Parameters Measured					
Proximal Sensor							
Optical Sensors (VIS-NIR, SWIR)	Measure reflectance of light at various wavelengths from soil surface	Organic Carbon, Moisture, Texture, Nitrogen					
Electromagnetic (EC) Sensors	Detect soil's electrical conductivity, influenced by ion concentration	Salinity, Moisture, Texture, Fertility Zones					
X-ray Fluorescence (XRF)	Emit X-rays and detect secondary X-rays emitted by elements in the soil	Micronutrients (Fe, Zn, Cu, Mn), P, K					
Gamma-ray Spectrometers	Detect natural gamma radiation from isotopes in the soil	Soil Texture, Organic Matter, Mineral Content					
Capacitive/Dielectric SensorsMeasure dielectric permittivity of soil, affected by water and air contentSoil Moistu		Soil Moisture, Porosity					
Ion-selective Electrodes (ISE)	Measure activity of specific ions in the soil solution	pH, Nitrate (NO₃ ⁻), Potassium (K ⁺)					
Remote Sensors							
Multispectral Cameras (Drone/Remote)	Capture reflected light in specific spectral bands	Surface moisture, vegetation index, nutrient mapping					
Portable NIR Spectrometers	Handheld spectrometers use NIR light to analyse soil in field conditions	Organic Carbon, Nitrogen, Phosphorus, Texture					

Types of sensors

Step	Description	How It's Done	Purpose
1. Data Collection	Sensors collect raw data from the soil, including physical and chemical signals (e.g., reflectance, EC).	- Sensors are deployed in the field (handheld or mounted on drones) Sensor readings are taken in real-time, with GPS coordinates recorded for each data point.	To gather real- time, site-specific data on soil properties.
2. Pre-processing of Data	Raw data undergoes noise reduction, normalization, and	- Data is cleaned using smoothing algorithms (e.g., Savitzky-Golay) to remove	To clean and standardize data for further

AGRI MAGAZINE

Mandal	et al.	(2025)
		· · · ·

Agri Magazine, 02(05): 07-11 (MAY, 2025)

Agre magazine, 02(05): 0/-11 (MA1, 2025)				
	environmental corrections (e.g., moisture, angle).	noise Data is normalized to ensure consistency between sensor readings Corrections for environmental factors (like soil moisture) are applied.	analysis.	
3. Calibration with Ground Truth	Sensor readings are calibrated against laboratory soil analysis results (e.g., pH, organic carbon).	- A set of soil samples is taken from the field for lab testing The sensor readings are compared with laboratory results to develop calibration models (e.g., regression).	To establish accurate relationships between sensor data and actual soil properties.	
4. Model Development	Statistical or machine learning models (e.g., regression, neural networks) are used to interpret sensor data.	 Calibration models (e.g., Partial Least Squares Regression, Random Forest) are built to link sensor data with soil properties Algorithms process the sensor data to predict properties like pH, nitrogen, and organic carbon. 	To convert sensor readings into accurate soil fertility parameters (e.g., pH, N, P).	
5. Spatial Data Integration	Data is geo-referenced using GPS, and spatial interpolation techniques (e.g., Kriging) are applied.	- Each sensor reading is tagged with GPS coordinates Data is entered into GIS software Spatial interpolation methods (e.g., Kriging, Inverse Distance Weighting) estimate soil properties at unsampled locations.	To map the soil properties across the entire field and predict values at unsampled locations.	
6. Visualization & Mapping	GIS or remote sensing software creates spatial maps of soil properties (e.g., pH, organic carbon).	- GIS tools are used to generate thematic maps of soil parameters Maps visually represent the distribution of soil properties across the field.	To visualize spatial variation and create fertility maps.	
7. Management Zone Delineation	Soil maps are analysed to define Management Zones (MZs) based on fertility levels.	- Fertility maps are analysed to identify areas with similar nutrient levels MZs are created based on this analysis, which divide the field into zones with distinct soil needs.	To categorize the field into areas with similar fertility for targeted management.	
8. Fertilizer Recommendations	Based on MZs, recommendations for variable-rate fertilizer applications are made.	 Fertilizer prescriptions are generated for each management zone The amount of fertilizer is adjusted based on the fertility levels in each zone. 	To optimize fertilizer use, reducing input costs and improving crop yield.	
9. Decision Support	Maps and data are used by farmers to make informed decisions on soil and crop management.	- Farmers and agronomists use the fertility maps and MZs to make decisions about soil amendments, irrigation, and crop management practices.	To support precision farming and ensure sustainable practices.	

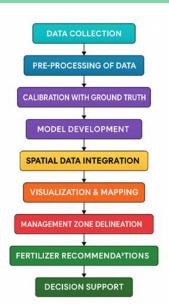


Fig.1. Flowchart of complete process to use sensors for successful fertilizer recommendation

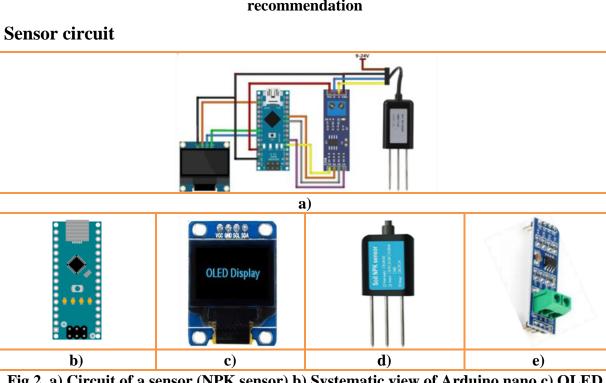


Fig.2. a) Circuit of a sensor (NPK sensor) b) Systematic view of Arduino nano c) OLED Display Module d) Soil NPK Sensor e) Interface module

Applications in Agriculture

- Precision nutrient management.
- Sustainable fertilizer use.
- Yield prediction models.
- Soil health monitoring over time.
- Variable Rate Technology (VRT) application of fertilizers.

Advantages

- Fast, real-time soil analysis.
- Non-destructive and cost-effective.
- Enhances spatial resolution.
- Reduces lab dependency.
- Promotes efficient fertilizer use

Limitations

- High initial cost of sensors and drones.
- Requires calibration with lab data.
- Limited depth of sensing (usually topsoil).
- Skill-intensive for operation and interpretation.

Conclusion

Sensor-based soil fertility analysis represents a significant advancement in modern agriculture, bridging the gap between conventional soil testing and precision farming. Its ability to deliver real-time, high-resolution data on essential soil properties enables farmers and agronomists to make timely and targeted interventions. When combined with geospatial technologies and predictive modeling, sensor data not only enhances the accuracy of soil nutrient assessments but also supports the development of efficient fertilizer strategies tailored to specific field zones. Although initial costs and technical requirements pose certain challenges, the long-term benefits in terms of productivity, sustainability, and environmental stewardship are substantial. As technology continues to evolve, sensor-based soil analysis is poised to become an integral part of intelligent and sustainable agricultural systems.

References

- Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71–91. https://doi.org/10.1016/j.compag.2004.03.002
- Mouazen, A. M., Maleki, M. R., De Baerdemaeker, J., & Ramon, H. (2007). On-line measurement of some selected soil properties using a VIS-NIR sensor. Soil and Tillage Research, 93(1), 13–27. https://doi.org/10.1016/j.still.2006.03.009
- Sato, M., Chen, W., Zhu, X., & Ustin, S. L. (2015). Remote sensing of soil and vegetation for precision agriculture. Remote Sensing, 7(11), 14339–14358. https://doi.org/10.3390/rs71114339
- 4. Sudduth, K. A., Drummond, S. T., & Kitchen, N. R. (2010). Accuracy issues in estimating soil properties with on-the-go sensing techniques. Soil Science Society of America Journal, 74(6), 2201–2208. https://doi.org/10.2136/sssaj2010.0071